зеркало из
				https://github.com/docxology/cognitive.git
				synced 2025-10-31 05:06:04 +02:00 
			
		
		
		
	
		
			
				
	
	
		
			226 строки
		
	
	
		
			4.9 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			226 строки
		
	
	
		
			4.9 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| # Machine Readability and Automation
 | |
| 
 | |
| ---
 | |
| title: Machine Readability and Automation
 | |
| type: concept
 | |
| status: stable
 | |
| created: 2024-02-06
 | |
| tags:
 | |
|   - automation
 | |
|   - machine-learning
 | |
|   - tooling
 | |
| related:
 | |
|   - [[plain_text_benefits]]
 | |
|   - [[automation_tools]]
 | |
|   - [[ci_cd_pipeline]]
 | |
| ---
 | |
| 
 | |
| ## Overview
 | |
| Machine readability is a core benefit of plain text formats, enabling automated processing, validation, and intelligence augmentation. This document explores how our plain text ecosystem facilitates automation and machine learning integration.
 | |
| 
 | |
| ## Text Processing Benefits
 | |
| 
 | |
| ### 1. Structured Data Extraction
 | |
| ```python
 | |
| # Example of extracting model parameters
 | |
| def extract_parameters(markdown_file):
 | |
|     """Extract model parameters from markdown documentation.
 | |
|     See [[parameter_extraction]] for details."""
 | |
|     parameters = {}
 | |
|     # Parse YAML frontmatter
 | |
|     # Extract code blocks
 | |
|     # Parse parameter definitions
 | |
|     return parameters
 | |
| ```
 | |
| 
 | |
| ### 2. Knowledge Graph Construction
 | |
| - **Automated Link Analysis**
 | |
|   - [[link_extraction]]
 | |
|   - [[graph_construction]]
 | |
|   - [[relationship_inference]]
 | |
| 
 | |
| ### 3. Semantic Analysis
 | |
| - **Natural Language Processing**
 | |
|   - [[text_embedding]]
 | |
|   - [[semantic_search]]
 | |
|   - [[concept_clustering]]
 | |
| 
 | |
| ## Automation Capabilities
 | |
| 
 | |
| ### 1. Documentation Processing
 | |
| ```python
 | |
| # Automated documentation validation
 | |
| def validate_docs():
 | |
|     """
 | |
|     Validates documentation structure and links.
 | |
|     See [[documentation_validation]] for rules.
 | |
|     """
 | |
|     check_broken_links()
 | |
|     validate_frontmatter()
 | |
|     check_code_examples()
 | |
| ```
 | |
| 
 | |
| ### 2. Code Generation
 | |
| - **Template-Based Generation**
 | |
|   - [[code_templates]]
 | |
|   - [[boilerplate_generation]]
 | |
|   - [[test_generation]]
 | |
| 
 | |
| ### 3. Quality Checks
 | |
| - **Automated Validation**
 | |
|   - [[style_checking]]
 | |
|   - [[link_validation]]
 | |
|   - [[consistency_checking]]
 | |
| 
 | |
| ## Machine Learning Integration
 | |
| 
 | |
| ### 1. Training Data Preparation
 | |
| ```python
 | |
| # Convert documentation to training data
 | |
| def prepare_training_data():
 | |
|     """
 | |
|     Extracts training examples from documentation.
 | |
|     See [[training_data_preparation]].
 | |
|     """
 | |
|     examples = []
 | |
|     # Parse markdown files
 | |
|     # Extract code examples
 | |
|     # Generate labels
 | |
|     return examples
 | |
| ```
 | |
| 
 | |
| ### 2. Model Training
 | |
| - **Documentation-Based Training**
 | |
|   - [[code_completion]]
 | |
|   - [[documentation_generation]]
 | |
|   - [[error_prediction]]
 | |
| 
 | |
| ### 3. Automated Improvement
 | |
| - **Continuous Learning**
 | |
|   - [[feedback_loops]]
 | |
|   - [[model_refinement]]
 | |
|   - [[performance_optimization]]
 | |
| 
 | |
| ## Tooling Integration
 | |
| 
 | |
| ### 1. CI/CD Pipeline
 | |
| ```yaml
 | |
| # Example GitHub Actions workflow
 | |
| name: Documentation CI
 | |
| on: [push]
 | |
| jobs:
 | |
|   validate:
 | |
|     runs-on: ubuntu-latest
 | |
|     steps:
 | |
|       - uses: actions/checkout@v2
 | |
|       - name: Check Links
 | |
|         run: python tools/validate_links.py
 | |
|       - name: Generate Docs
 | |
|         run: python tools/generate_docs.py
 | |
| ```
 | |
| 
 | |
| ### 2. Development Tools
 | |
| - **Editor Integration**
 | |
|   - [[ide_plugins]]
 | |
|   - [[linting_tools]]
 | |
|   - [[autocomplete]]
 | |
| 
 | |
| ### 3. Analysis Tools
 | |
| - **Automated Analysis**
 | |
|   - [[complexity_analysis]]
 | |
|   - [[coverage_reporting]]
 | |
|   - [[dependency_tracking]]
 | |
| 
 | |
| ## Knowledge Extraction
 | |
| 
 | |
| ### 1. Concept Mining
 | |
| ```python
 | |
| # Extract concepts from documentation
 | |
| def mine_concepts():
 | |
|     """
 | |
|     Identifies key concepts and relationships.
 | |
|     See [[concept_mining]].
 | |
|     """
 | |
|     concepts = {}
 | |
|     # Parse documentation
 | |
|     # Extract concepts
 | |
|     # Build relationships
 | |
|     return concepts
 | |
| ```
 | |
| 
 | |
| ### 2. Pattern Recognition
 | |
| - **Automated Pattern Detection**
 | |
|   - [[code_patterns]]
 | |
|   - [[documentation_patterns]]
 | |
|   - [[usage_patterns]]
 | |
| 
 | |
| ### 3. Knowledge Base Construction
 | |
| - **Automated Organization**
 | |
|   - [[knowledge_extraction]]
 | |
|   - [[taxonomy_building]]
 | |
|   - [[ontology_construction]]
 | |
| 
 | |
| ## Automation Examples
 | |
| 
 | |
| ### 1. Documentation Generation
 | |
| ```python
 | |
| # Generate API documentation
 | |
| def generate_api_docs():
 | |
|     """
 | |
|     Generates API documentation from source code.
 | |
|     See [[api_documentation]].
 | |
|     """
 | |
|     parse_source_code()
 | |
|     extract_docstrings()
 | |
|     generate_markdown()
 | |
| ```
 | |
| 
 | |
| ### 2. Validation Workflows
 | |
| ```mermaid
 | |
| graph TD
 | |
|     A[Parse Files] --> B[Extract Content]
 | |
|     B --> C[Validate Structure]
 | |
|     C --> D[Check Links]
 | |
|     D --> E[Generate Report]
 | |
| ```
 | |
| 
 | |
| ### 3. Learning Systems
 | |
| ```mermaid
 | |
| graph LR
 | |
|     A[Documentation] --> B[Training Data]
 | |
|     B --> C[Model Training]
 | |
|     C --> D[Automated Tools]
 | |
|     D --> E[Improved Docs]
 | |
| ```
 | |
| 
 | |
| ## Best Practices
 | |
| 
 | |
| ### 1. Structure Guidelines
 | |
| - **Machine-Friendly Format**
 | |
|   - [[consistent_formatting]]
 | |
|   - [[clear_structure]]
 | |
|   - [[metadata_standards]]
 | |
| 
 | |
| ### 2. Automation Rules
 | |
| - **Tool Configuration**
 | |
|   - [[tool_settings]]
 | |
|   - [[automation_rules]]
 | |
|   - [[validation_criteria]]
 | |
| 
 | |
| ### 3. Integration Patterns
 | |
| - **Tool Integration**
 | |
|   - [[workflow_integration]]
 | |
|   - [[tool_chaining]]
 | |
|   - [[feedback_systems]]
 | |
| 
 | |
| ## Related Tools
 | |
| - [[documentation_generators]]
 | |
| - [[static_analyzers]]
 | |
| - [[validation_tools]]
 | |
| - [[automation_frameworks]]
 | |
| 
 | |
| ## References
 | |
| - [[automation_patterns]]
 | |
| - [[machine_learning_integration]]
 | |
| - [[tooling_ecosystem]]
 | |
| - [[ci_cd_practices]]  | 
