| title | type | status | created | tags | semantic_relations | 
| Examples Index | index | stable | 2024-02-07 | 
| examples |  
| implementation |  
| index |  |  | 
Examples Index
Core Examples
Active Inference Examples
POMDP Examples
Swarm Intelligence Examples
Implementation Examples
Agent Implementation
# Basic active inference agent
class ActiveInferenceAgent:
    def __init__(self, config):
        self.beliefs = initialize_beliefs()
        self.model = create_generative_model()
        
    def update(self, observation):
        # Update beliefs using variational inference
        self.beliefs = update_beliefs(
            self.beliefs, observation, self.model
        )
        
        # Select action using expected free energy
        action = select_action(self.beliefs, self.model)
        return action
Environment Implementation
# Basic environment setup
class Environment:
    def __init__(self, config):
        self.state = initialize_state()
        self.agents = create_agents()
        
    def step(self, actions):
        # Update environment state
        self.state = update_state(self.state, actions)
        
        # Generate observations
        observations = generate_observations(self.state)
        return observations
Simulation Implementation
# Basic simulation loop
def run_simulation(config):
    env = Environment(config)
    agent = ActiveInferenceAgent(config)
    
    for step in range(config.max_steps):
        # Agent-environment interaction
        observation = env.get_observation()
        action = agent.update(observation)
        env.step(action)
Advanced Examples
Hierarchical Systems
Multi-Agent Systems
Complex Systems
Application Examples
Robotics Applications
Cognitive Applications
Biological Applications
Integration Examples
Framework Integration
Tool Integration
System Integration
Testing Examples
Unit Tests
def test_belief_updating():
    """Test belief updating mechanism."""
    agent = setup_test_agent()
    observation = generate_test_observation()
    
    initial_beliefs = agent.beliefs.copy()
    agent.update(observation)
    
    assert not np.allclose(agent.beliefs, initial_beliefs)
    assert is_normalized(agent.beliefs)
Integration Tests
def test_agent_environment():
    """Test agent-environment interaction."""
    env = setup_test_environment()
    agent = setup_test_agent()
    
    observation = env.reset()
    for _ in range(100):
        action = agent.update(observation)
        observation, reward, done = env.step(action)
        if done:
            break
Performance Tests
def test_performance():
    """Test system performance."""
    env = setup_benchmark_environment()
    agent = setup_benchmark_agent()
    
    start_time = time.time()
    run_benchmark(env, agent)
    end_time = time.time()
    
    assert end_time - start_time < MAX_TIME
Related Resources
Documentation
Knowledge Base
Learning Resources