зеркало из
				https://github.com/docxology/cognitive.git
				synced 2025-10-31 05:06:04 +02:00 
			
		
		
		
	
		
			
				
	
	
		
			242 строки
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			242 строки
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| # AI-Oriented Additional Folders
 | |
| 
 | |
| ---
 | |
| title: AI Additional Folders Guide
 | |
| type: guide
 | |
| status: stable
 | |
| created: 2024-02-06
 | |
| tags:
 | |
|   - organization
 | |
|   - structure
 | |
|   - ai
 | |
|   - extensions
 | |
| related:
 | |
|   - [[ai_file_organization]]
 | |
|   - [[ai_documentation_style]]
 | |
|   - [[knowledge_organization]]
 | |
| ---
 | |
| 
 | |
| ## Overview
 | |
| This guide defines additional folder structures and organization patterns optimized for advanced AI processing and knowledge management.
 | |
| 
 | |
| ## Extended Directory Structure
 | |
| 
 | |
| ### Research Artifacts
 | |
| ```
 | |
| research/
 | |
| ├── experiments/          # Experiment specifications
 | |
| │   ├── designs/         # Experimental designs
 | |
| │   ├── protocols/       # Experimental protocols
 | |
| │   └── results/        # Results and analysis
 | |
| │
 | |
| ├── papers/              # Research papers
 | |
| │   ├── drafts/         # Work in progress
 | |
| │   ├── published/      # Published papers
 | |
| │   └── references/     # Reference materials
 | |
| │
 | |
| └── data/               # Research data
 | |
|     ├── raw/           # Raw data
 | |
|     ├── processed/     # Processed data
 | |
|     └── analysis/      # Analysis results
 | |
| ```
 | |
| 
 | |
| ### Knowledge Embeddings
 | |
| ```
 | |
| embeddings/
 | |
| ├── vectors/             # Embedding vectors
 | |
| │   ├── concepts/       # Concept embeddings
 | |
| │   ├── documents/      # Document embeddings
 | |
| │   └── relations/      # Relationship embeddings
 | |
| │
 | |
| ├── models/             # Embedding models
 | |
| │   ├── trained/       # Trained models
 | |
| │   ├── checkpoints/   # Training checkpoints
 | |
| │   └── configs/       # Model configurations
 | |
| │
 | |
| └── analysis/           # Embedding analysis
 | |
|     ├── similarity/    # Similarity matrices
 | |
|     ├── clusters/      # Cluster analysis
 | |
|     └── visualization/ # Embedding visualizations
 | |
| ```
 | |
| 
 | |
| ### Semantic Processing
 | |
| ```
 | |
| semantic/
 | |
| ├── ontologies/          # Domain ontologies
 | |
| │   ├── core/          # Core domain concepts
 | |
| │   ├── relations/     # Relationship definitions
 | |
| │   └── mappings/      # Cross-domain mappings
 | |
| │
 | |
| ├── reasoning/          # Reasoning engines
 | |
| │   ├── rules/         # Inference rules
 | |
| │   ├── logic/         # Logical frameworks
 | |
| │   └── constraints/   # Constraint definitions
 | |
| │
 | |
| └── queries/            # Semantic queries
 | |
|     ├── templates/     # Query templates
 | |
|     ├── patterns/      # Search patterns
 | |
|     └── results/       # Query results
 | |
| ```
 | |
| 
 | |
| ### Interactive Learning
 | |
| ```
 | |
| interactive/
 | |
| ├── tutorials/           # Interactive tutorials
 | |
| │   ├── basic/         # Basic concepts
 | |
| │   ├── advanced/      # Advanced topics
 | |
| │   └── specialized/   # Domain-specific
 | |
| │
 | |
| ├── notebooks/          # Jupyter notebooks
 | |
| │   ├── examples/      # Example notebooks
 | |
| │   ├── exercises/     # Practice exercises
 | |
| │   └── solutions/     # Exercise solutions
 | |
| │
 | |
| └── simulations/        # Interactive simulations
 | |
|     ├── environments/  # Simulation environments
 | |
|     ├── scenarios/     # Scenario definitions
 | |
|     └── results/       # Simulation results
 | |
| ```
 | |
| 
 | |
| ## Metadata Requirements
 | |
| 
 | |
| ### Research Metadata
 | |
| ```yaml
 | |
| research_metadata:
 | |
|   experiment:
 | |
|     id: string
 | |
|     type: string
 | |
|     status: string
 | |
|     dependencies: list
 | |
|     validation: object
 | |
|   paper:
 | |
|     title: string
 | |
|     authors: list
 | |
|     status: string
 | |
|     related_experiments: list
 | |
|   data:
 | |
|     source: string
 | |
|     format: string
 | |
|     schema: object
 | |
|     validation: object
 | |
| ```
 | |
| 
 | |
| ### Embedding Metadata
 | |
| ```yaml
 | |
| embedding_metadata:
 | |
|   vector:
 | |
|     model: string
 | |
|     dimensions: integer
 | |
|     timestamp: datetime
 | |
|     source: string
 | |
|   model:
 | |
|     architecture: string
 | |
|     parameters: object
 | |
|     performance: object
 | |
|   analysis:
 | |
|     method: string
 | |
|     parameters: object
 | |
|     results: object
 | |
| ```
 | |
| 
 | |
| ### Semantic Metadata
 | |
| ```yaml
 | |
| semantic_metadata:
 | |
|   ontology:
 | |
|     domain: string
 | |
|     version: string
 | |
|     dependencies: list
 | |
|     validation: object
 | |
|   reasoning:
 | |
|     engine: string
 | |
|     rules: list
 | |
|     constraints: object
 | |
|   query:
 | |
|     type: string
 | |
|     pattern: string
 | |
|     parameters: object
 | |
| ```
 | |
| 
 | |
| ## Processing Instructions
 | |
| 
 | |
| ### Research Processing
 | |
| ```python
 | |
| # @research_processing
 | |
| def process_research():
 | |
|     """
 | |
|     Processing steps:
 | |
|     1. Extract experimental data
 | |
|     2. Analyze results
 | |
|     3. Generate visualizations
 | |
|     4. Update knowledge base
 | |
|     """
 | |
|     pass
 | |
| ```
 | |
| 
 | |
| ### Embedding Processing
 | |
| ```python
 | |
| # @embedding_processing
 | |
| def process_embeddings():
 | |
|     """
 | |
|     Processing steps:
 | |
|     1. Generate embeddings
 | |
|     2. Update vector store
 | |
|     3. Analyze relationships
 | |
|     4. Optimize representations
 | |
|     """
 | |
|     pass
 | |
| ```
 | |
| 
 | |
| ### Semantic Processing
 | |
| ```python
 | |
| # @semantic_processing
 | |
| def process_semantics():
 | |
|     """
 | |
|     Processing steps:
 | |
|     1. Parse ontologies
 | |
|     2. Apply reasoning rules
 | |
|     3. Execute queries
 | |
|     4. Update knowledge graph
 | |
|     """
 | |
|     pass
 | |
| ```
 | |
| 
 | |
| ## Integration Points
 | |
| 
 | |
| ### Research Integration
 | |
| ```mermaid
 | |
| graph TD
 | |
|     A[Experiments] --> B[Analysis]
 | |
|     B --> C[Papers]
 | |
|     C --> D[Knowledge Base]
 | |
|     D --> E[Semantic Graph]
 | |
| ```
 | |
| 
 | |
| ### Embedding Integration
 | |
| ```mermaid
 | |
| graph LR
 | |
|     A[Documents] --> B[Vectors]
 | |
|     B --> C[Analysis]
 | |
|     C --> D[Knowledge Graph]
 | |
|     D --> E[Reasoning]
 | |
| ```
 | |
| 
 | |
| ### Semantic Integration
 | |
| ```mermaid
 | |
| graph TD
 | |
|     A[Ontologies] --> B[Reasoning]
 | |
|     B --> C[Queries]
 | |
|     C --> D[Results]
 | |
|     D --> E[Knowledge Update]
 | |
| ```
 | |
| 
 | |
| ## Related Documentation
 | |
| - [[ai_file_organization]]
 | |
| - [[research_management]]
 | |
| - [[embedding_framework]]
 | |
| - [[semantic_processing]]
 | |
| 
 | |
| ## References
 | |
| - [[research_workflows]]
 | |
| - [[embedding_techniques]]
 | |
| - [[semantic_frameworks]]
 | |
| - [[integration_patterns]]  | 
