cognitive/docs/guides/ai_folder_structure.md
Daniel Ari Friedman 6caa1a7cb1 Update
2025-02-07 08:16:25 -08:00

242 строки
5.5 KiB
Markdown

# AI-Oriented Additional Folders
---
title: AI Additional Folders Guide
type: guide
status: stable
created: 2024-02-06
tags:
- organization
- structure
- ai
- extensions
related:
- [[ai_file_organization]]
- [[ai_documentation_style]]
- [[knowledge_organization]]
---
## Overview
This guide defines additional folder structures and organization patterns optimized for advanced AI processing and knowledge management.
## Extended Directory Structure
### Research Artifacts
```
research/
├── experiments/ # Experiment specifications
│ ├── designs/ # Experimental designs
│ ├── protocols/ # Experimental protocols
│ └── results/ # Results and analysis
├── papers/ # Research papers
│ ├── drafts/ # Work in progress
│ ├── published/ # Published papers
│ └── references/ # Reference materials
└── data/ # Research data
├── raw/ # Raw data
├── processed/ # Processed data
└── analysis/ # Analysis results
```
### Knowledge Embeddings
```
embeddings/
├── vectors/ # Embedding vectors
│ ├── concepts/ # Concept embeddings
│ ├── documents/ # Document embeddings
│ └── relations/ # Relationship embeddings
├── models/ # Embedding models
│ ├── trained/ # Trained models
│ ├── checkpoints/ # Training checkpoints
│ └── configs/ # Model configurations
└── analysis/ # Embedding analysis
├── similarity/ # Similarity matrices
├── clusters/ # Cluster analysis
└── visualization/ # Embedding visualizations
```
### Semantic Processing
```
semantic/
├── ontologies/ # Domain ontologies
│ ├── core/ # Core domain concepts
│ ├── relations/ # Relationship definitions
│ └── mappings/ # Cross-domain mappings
├── reasoning/ # Reasoning engines
│ ├── rules/ # Inference rules
│ ├── logic/ # Logical frameworks
│ └── constraints/ # Constraint definitions
└── queries/ # Semantic queries
├── templates/ # Query templates
├── patterns/ # Search patterns
└── results/ # Query results
```
### Interactive Learning
```
interactive/
├── tutorials/ # Interactive tutorials
│ ├── basic/ # Basic concepts
│ ├── advanced/ # Advanced topics
│ └── specialized/ # Domain-specific
├── notebooks/ # Jupyter notebooks
│ ├── examples/ # Example notebooks
│ ├── exercises/ # Practice exercises
│ └── solutions/ # Exercise solutions
└── simulations/ # Interactive simulations
├── environments/ # Simulation environments
├── scenarios/ # Scenario definitions
└── results/ # Simulation results
```
## Metadata Requirements
### Research Metadata
```yaml
research_metadata:
experiment:
id: string
type: string
status: string
dependencies: list
validation: object
paper:
title: string
authors: list
status: string
related_experiments: list
data:
source: string
format: string
schema: object
validation: object
```
### Embedding Metadata
```yaml
embedding_metadata:
vector:
model: string
dimensions: integer
timestamp: datetime
source: string
model:
architecture: string
parameters: object
performance: object
analysis:
method: string
parameters: object
results: object
```
### Semantic Metadata
```yaml
semantic_metadata:
ontology:
domain: string
version: string
dependencies: list
validation: object
reasoning:
engine: string
rules: list
constraints: object
query:
type: string
pattern: string
parameters: object
```
## Processing Instructions
### Research Processing
```python
# @research_processing
def process_research():
"""
Processing steps:
1. Extract experimental data
2. Analyze results
3. Generate visualizations
4. Update knowledge base
"""
pass
```
### Embedding Processing
```python
# @embedding_processing
def process_embeddings():
"""
Processing steps:
1. Generate embeddings
2. Update vector store
3. Analyze relationships
4. Optimize representations
"""
pass
```
### Semantic Processing
```python
# @semantic_processing
def process_semantics():
"""
Processing steps:
1. Parse ontologies
2. Apply reasoning rules
3. Execute queries
4. Update knowledge graph
"""
pass
```
## Integration Points
### Research Integration
```mermaid
graph TD
A[Experiments] --> B[Analysis]
B --> C[Papers]
C --> D[Knowledge Base]
D --> E[Semantic Graph]
```
### Embedding Integration
```mermaid
graph LR
A[Documents] --> B[Vectors]
B --> C[Analysis]
C --> D[Knowledge Graph]
D --> E[Reasoning]
```
### Semantic Integration
```mermaid
graph TD
A[Ontologies] --> B[Reasoning]
B --> C[Queries]
C --> D[Results]
D --> E[Knowledge Update]
```
## Related Documentation
- [[ai_file_organization]]
- [[research_management]]
- [[embedding_framework]]
- [[semantic_processing]]
## References
- [[research_workflows]]
- [[embedding_techniques]]
- [[semantic_frameworks]]
- [[integration_patterns]]