cognitive/docs/guides/ai_validation_framework.md
Daniel Ari Friedman 6caa1a7cb1 Update
2025-02-07 08:16:25 -08:00

6.2 KiB

AI Validation Framework


title: AI Validation Framework type: guide status: stable created: 2024-02-06 tags:


Overview

This guide defines comprehensive validation and quality assurance frameworks for AI-oriented documentation and knowledge management.

Validation Framework

Core Metrics

# @core_metrics
validation_metrics = {
    "documentation": {
        "completeness": float,     # Coverage of required sections
        "consistency": float,      # Internal consistency
        "coherence": float,        # Logical flow
        "machine_readability": float  # AI processing score
    },
    "knowledge_graph": {
        "connectivity": float,     # Graph connectivity
        "coverage": float,         # Concept coverage
        "density": float,          # Relationship density
        "quality": float          # Overall quality score
    },
    "embeddings": {
        "coverage": float,         # Embedding coverage
        "discrimination": float,   # Discriminative power
        "clustering": float,       # Cluster quality
        "stability": float        # Embedding stability
    }
}

Quality Thresholds

quality_thresholds:
  critical:
    completeness: 1.0
    consistency: 1.0
    machine_readability: 1.0
  standard:
    completeness: 0.9
    consistency: 0.9
    machine_readability: 0.9
  minimal:
    completeness: 0.6
    consistency: 0.6
    machine_readability: 0.6

Validation Rules

Documentation Validation

# @documentation_validation
def validate_documentation(doc: Document) -> ValidationResult:
    """
    Validate documentation quality
    
    Validation steps:
    1. Check structure completeness
    2. Verify metadata consistency
    3. Validate semantic markup
    4. Assess machine readability
    5. Verify link integrity
    """
    pass

Knowledge Graph Validation

# @graph_validation
def validate_knowledge_graph(graph: KnowledgeGraph) -> ValidationResult:
    """
    Validate knowledge graph quality
    
    Validation steps:
    1. Check graph connectivity
    2. Verify relationship consistency
    3. Validate node properties
    4. Assess coverage completeness
    """
    pass

Embedding Validation

# @embedding_validation
def validate_embeddings(embeddings: dict) -> ValidationResult:
    """
    Validate embedding quality
    
    Validation steps:
    1. Check dimensionality
    2. Verify normalization
    3. Assess discrimination
    4. Validate stability
    """
    pass

Quality Assurance

Automated Checks

# @automated_qa
class QualityAssurance:
    def check_documentation(self):
        """Documentation quality checks"""
        pass
    
    def check_knowledge_graph(self):
        """Knowledge graph quality checks"""
        pass
    
    def check_embeddings(self):
        """Embedding quality checks"""
        pass

Continuous Validation

# @continuous_validation
def continuous_validation_pipeline():
    """
    Continuous validation pipeline
    
    Steps:
    1. Monitor changes
    2. Trigger validations
    3. Generate reports
    4. Update metrics
    """
    pass

Processing Pipeline

Validation Flow

graph TD
    A[Input] --> B[Structure Validation]
    B --> C[Content Validation]
    C --> D[Semantic Validation]
    D --> E[Graph Validation]
    E --> F[Quality Report]

Quality Monitoring

graph LR
    A[Changes] --> B[Validation]
    B --> C[Analysis]
    C --> D[Reporting]
    D --> E[Improvement]
    E --> A

Integration Points

Documentation Integration

# @documentation_integration
class DocumentationValidator:
    def validate(self, doc: Document) -> ValidationResult:
        """
        Validate documentation
        
        Steps:
        1. Structure check
        2. Content check
        3. Link check
        4. Quality assessment
        """
        pass

Knowledge Graph Integration

# @graph_integration
class GraphValidator:
    def validate(self, graph: KnowledgeGraph) -> ValidationResult:
        """
        Validate knowledge graph
        
        Steps:
        1. Node validation
        2. Edge validation
        3. Property validation
        4. Consistency check
        """
        pass

Reporting Framework

Quality Reports

# @quality_reporting
def generate_quality_report() -> Report:
    """
    Generate comprehensive quality report
    
    Sections:
    1. Overall metrics
    2. Detailed analysis
    3. Issue identification
    4. Improvement suggestions
    """
    pass

Metric Tracking

# @metric_tracking
def track_metrics(metrics: dict):
    """
    Track quality metrics over time
    
    Features:
    1. Trend analysis
    2. Regression detection
    3. Progress monitoring
    4. Alert generation
    """
    pass

Improvement Framework

Issue Resolution

# @issue_resolution
def resolve_issues(issues: list) -> ResolutionPlan:
    """
    Generate issue resolution plan
    
    Steps:
    1. Prioritize issues
    2. Generate solutions
    3. Plan implementation
    4. Track resolution
    """
    pass

Quality Enhancement

# @quality_enhancement
def enhance_quality(target: str) -> EnhancementPlan:
    """
    Generate quality enhancement plan
    
    Steps:
    1. Identify opportunities
    2. Propose improvements
    3. Plan implementation
    4. Track progress
    """
    pass

Best Practices

Validation Guidelines

  1. Regular Validation

    • Automated daily checks
    • Weekly comprehensive validation
    • Monthly quality reviews
  2. Quality Monitoring

    • Real-time metric tracking
    • Trend analysis
    • Regression detection
  3. Continuous Improvement

    • Issue tracking
    • Enhancement planning
    • Progress monitoring

References