cognitive/docs/guides/learning_paths/active_inference.md
Daniel Ari Friedman a61f13a26f Updates
2025-02-07 11:08:25 -08:00

209 строки
6.3 KiB
Markdown

---
title: Active Inference Learning Path
type: learning_path
status: stable
created: 2024-02-07
tags:
- active_inference
- learning
- progression
semantic_relations:
- type: implements
links: [[learning_path_template]]
- type: relates
links:
- [[knowledge_base/cognitive/active_inference]]
- [[knowledge_base/mathematics/free_energy_theory]]
---
# Active Inference Learning Path
## Overview
This learning path guides you through understanding and implementing active inference, from foundational concepts to advanced applications. You'll learn the theoretical principles, mathematical foundations, and practical implementations.
## Prerequisites
### Required Knowledge
- [[knowledge_base/mathematics/probability_theory|Probability Theory]]
- [[knowledge_base/mathematics/information_theory|Information Theory]]
- [[knowledge_base/mathematics/statistical_foundations|Statistical Foundations]]
### Recommended Background
- [[knowledge_base/cognitive/bayesian_brain|Bayesian Brain]]
- [[knowledge_base/cognitive/predictive_processing|Predictive Processing]]
- Python programming experience
## Learning Progression
### 1. Foundation (Week 1-2)
#### Core Concepts
- [[knowledge_base/cognitive/free_energy_principle|Free Energy Principle]]
- [[knowledge_base/cognitive/predictive_processing|Predictive Processing]]
- [[knowledge_base/cognitive/active_inference|Active Inference Basics]]
#### Practical Exercises
- [[examples/basic_belief_updating|Basic Belief Updating]]
- [[examples/simple_prediction|Simple Prediction Exercise]]
#### Learning Objectives
- Understand the free energy principle
- Grasp predictive processing fundamentals
- Implement basic belief updating
### 2. Mathematical Framework (Week 3-4)
#### Advanced Concepts
- [[knowledge_base/mathematics/variational_methods|Variational Methods]]
- [[knowledge_base/mathematics/free_energy_theory|Free Energy Theory]]
- [[knowledge_base/mathematics/expected_free_energy|Expected Free Energy]]
#### Implementation Practice
- [[examples/variational_inference|Variational Inference]]
- [[examples/free_energy_computation|Free Energy Computation]]
#### Learning Objectives
- Master variational inference
- Implement free energy computation
- Understand expected free energy
### 3. Implementation (Week 5-6)
#### Core Components
- [[knowledge_base/mathematics/belief_updating|Belief Updating]]
- [[knowledge_base/mathematics/policy_selection|Policy Selection]]
- [[knowledge_base/mathematics/action_distribution|Action Distribution]]
#### Projects
- [[examples/active_inference_basic|Basic Active Inference Agent]]
- [[examples/pomdp_agent|POMDP Implementation]]
#### Learning Objectives
- Implement complete active inference agent
- Master POMDP framework integration
- Handle real-world applications
### 4. Advanced Topics (Week 7-8)
#### Specialized Areas
- [[knowledge_base/mathematics/path_integral_theory|Path Integral Methods]]
- [[knowledge_base/cognitive/hierarchical_processing|Hierarchical Models]]
- [[knowledge_base/cognitive/social_cognition|Social Active Inference]]
#### Advanced Projects
- [[examples/hierarchical_agent|Hierarchical Agent]]
- [[examples/multi_agent|Multi-Agent System]]
#### Learning Objectives
- Implement hierarchical models
- Develop multi-agent systems
- Apply to complex domains
## Study Resources
### Core Reading
- [[knowledge_base/cognitive/free_energy_principle|Free Energy Principle]]
- [[knowledge_base/mathematics/active_inference_theory|Active Inference Theory]]
- [[knowledge_base/cognitive/active_inference|Active Inference Overview]]
### Code Examples
- [[examples/active_inference_basic|Basic Implementation]]
- [[examples/pomdp_agent|POMDP Example]]
- [[examples/hierarchical_agent|Hierarchical Example]]
### Additional Resources
- Research papers collection
- Video tutorials
- Community discussions
## Assessment
### Knowledge Checkpoints
1. Foundation: Free energy and predictive processing
2. Mathematics: Variational methods and inference
3. Implementation: Agent architecture and POMDP
4. Advanced: Hierarchical and multi-agent systems
### Projects
1. Mini-project: Basic belief updating system
2. Implementation: Active inference agent
3. Final project: Complex application domain
### Success Criteria
- Theoretical understanding demonstrated
- Working implementations completed
- Advanced concepts mastered
- Real-world application developed
## Next Steps
### Advanced Paths
- [[learning_paths/hierarchical_modeling|Hierarchical Modeling]]
- [[learning_paths/multi_agent_systems|Multi-Agent Systems]]
- [[learning_paths/robotics_control|Robotics Control]]
### Specializations
- [[specializations/neuroscience|Computational Neuroscience]]
- [[specializations/robotics|Robotics and Control]]
- [[specializations/ai|Artificial Intelligence]]
## Related Paths
### Prerequisites
- [[learning_paths/probability_theory|Probability Theory]]
- [[learning_paths/information_theory|Information Theory]]
### Follow-up Paths
- [[learning_paths/advanced_ai|Advanced AI]]
- [[learning_paths/cognitive_architectures|Cognitive Architectures]]
## Implementation Examples
### Basic Examples
```python
# Basic active inference agent structure
class ActiveInferenceAgent:
def __init__(self, model_params):
self.beliefs = initialize_beliefs()
self.policies = generate_policies()
def update_beliefs(self, observation):
# Belief updating using variational inference
pass
def select_action(self):
# Policy selection using expected free energy
pass
```
### Advanced Implementation
```python
# Hierarchical active inference
class HierarchicalAgent:
def __init__(self, levels):
self.levels = [
ActiveInferenceAgent(level_params)
for level_params in levels
]
def update(self, observation):
# Hierarchical message passing
for level in self.levels:
level.update_beliefs(observation)
prediction = level.generate_prediction()
observation = prediction # For next level
```
## Common Challenges
### Theoretical Challenges
- Understanding variational inference
- Grasping hierarchical processing
- Interpreting free energy
### Implementation Challenges
- Numerical stability
- Performance optimization
- Model design
### Solutions
- Start with simple examples
- Use provided templates
- Follow progressive complexity