зеркало из
				https://github.com/docxology/cognitive.git
				synced 2025-10-31 05:06:04 +02:00 
			
		
		
		
	
		
			
				
	
	
	
		
			3.4 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	
			3.4 KiB
		
	
	
	
	
	
	
	
| title | type | status | created | tags | semantic_relations | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Implementation Example Template | template | stable | 2024-02-07 | 
 | 
 | 
[Example Name]
Overview
[Brief description of what this example demonstrates and its significance]
Theoretical Background
Core Concepts
Mathematical Foundation
- Key equations
- Theoretical constraints
- Implementation considerations
Implementation
Dependencies
# Required packages
import numpy as np
import torch
import matplotlib.pyplot as plt
# Add other dependencies
Core Implementation
class ExampleImplementation:
    """
    Main implementation class.
    
    Attributes:
        param1: Description of parameter 1
        param2: Description of parameter 2
    """
    
    def __init__(self, parameters):
        """Initialize with configuration."""
        self.parameters = parameters
        
    def core_method(self, input_data):
        """
        Core computation method.
        
        Args:
            input_data: Description of input
            
        Returns:
            Processed output
        """
        # Implementation
        pass
Usage Example
# Example usage
parameters = {
    'param1': value1,
    'param2': value2
}
implementation = ExampleImplementation(parameters)
result = implementation.core_method(input_data)
Configuration
Parameters
# Configuration example
parameters:
  param1: default_value1
  param2: default_value2
  
advanced_settings:
  setting1: value1
  setting2: value2
Environment Setup
# Environment setup commands
pip install -r requirements.txt
python setup.py develop
Validation
Test Cases
def test_implementation():
    """Test core functionality."""
    implementation = ExampleImplementation(test_parameters)
    result = implementation.core_method(test_input)
    assert check_condition(result)
Performance Metrics
- Metric 1: Description and expected values
- Metric 2: Description and expected values
- Metric 3: Description and expected values
Results
Example Output
# Example output generation
results = implementation.run()
visualization.plot_results(results)
Visualization
def visualize_results(results):
    """Create standard visualizations."""
    plt.figure(figsize=(10, 6))
    # Plotting code
    plt.show()
Extensions
Possible Modifications
- Extension idea 1
- Extension idea 2
- Extension idea 3
Advanced Features
- Advanced feature 1
- Advanced feature 2
- Advanced feature 3
Troubleshooting
Common Issues
- Issue 1: Solution 1
- Issue 2: Solution 2
- Issue 3: Solution 3
Performance Tips
- Optimization tip 1
- Optimization tip 2
- Optimization tip 3
