зеркало из
				https://github.com/docxology/cognitive.git
				synced 2025-11-04 07:06:06 +02:00 
			
		
		
		
	
		
			
				
	
	
		
			392 строки
		
	
	
		
			14 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			392 строки
		
	
	
		
			14 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
# Implementation Patterns Guide
 | 
						|
 | 
						|
---
 | 
						|
title: Implementation Patterns Guide
 | 
						|
type: guide
 | 
						|
status: stable
 | 
						|
created: 2024-02-06
 | 
						|
tags:
 | 
						|
  - implementation
 | 
						|
  - patterns
 | 
						|
  - design
 | 
						|
  - architecture
 | 
						|
semantic_relations:
 | 
						|
  - type: implements
 | 
						|
    links: 
 | 
						|
      - [[knowledge_base/cognitive/active_inference|Active Inference]]
 | 
						|
      - [[knowledge_base/cognitive/free_energy_principle|Free Energy Principle]]
 | 
						|
  - type: relates
 | 
						|
    links:
 | 
						|
      - [[docs/api/api_reference|API Reference]]
 | 
						|
      - [[docs/concepts/theoretical_foundations|Theoretical Foundations]]
 | 
						|
---
 | 
						|
 | 
						|
## Overview
 | 
						|
 | 
						|
This guide outlines implementation patterns for translating cognitive science theory into practical code. While the [[knowledge_base/cognitive/cognitive_science|knowledge base]] provides theoretical foundations, this guide focuses on concrete implementation strategies.
 | 
						|
 | 
						|
## Core Implementation Patterns
 | 
						|
 | 
						|
### Active Inference Implementation
 | 
						|
```python
 | 
						|
# @active_inference_pattern
 | 
						|
class ActiveInferencePattern:
 | 
						|
    """
 | 
						|
    Core implementation pattern for Active Inference.
 | 
						|
    
 | 
						|
    Theory: [[knowledge_base/cognitive/active_inference|Active Inference]]
 | 
						|
    API: [[docs/api/api_reference#active-inference-framework|API Reference]]
 | 
						|
    """
 | 
						|
    def __init__(self):
 | 
						|
        self.belief_updater = BeliefUpdater()  # [[belief_updating]]
 | 
						|
        self.policy_selector = PolicySelector()  # [[action_selection]]
 | 
						|
        self.state_estimator = StateEstimator()  # [[state_estimation]]
 | 
						|
    
 | 
						|
    def cycle(self, observation: Observation) -> Action:
 | 
						|
        """
 | 
						|
        Single cycle of perception-action.
 | 
						|
        
 | 
						|
        Theory: [[knowledge_base/cognitive/active_inference#perception-action-cycle|Perception-Action Cycle]]
 | 
						|
        """
 | 
						|
        # Update beliefs
 | 
						|
        beliefs = self.belief_updater.update(observation)
 | 
						|
        
 | 
						|
        # Select policy
 | 
						|
        policy = self.policy_selector.select(beliefs)
 | 
						|
        
 | 
						|
        # Execute action
 | 
						|
        action = policy.get_action()
 | 
						|
        
 | 
						|
        return action
 | 
						|
```
 | 
						|
 | 
						|
### Belief Updating Pattern
 | 
						|
```python
 | 
						|
# @belief_updating_pattern
 | 
						|
class BeliefUpdatePattern:
 | 
						|
    """
 | 
						|
    Implementation pattern for belief updating.
 | 
						|
    
 | 
						|
    Theory:
 | 
						|
        - [[knowledge_base/cognitive/predictive_processing#belief-updating|Belief Updating]]
 | 
						|
        - [[knowledge_base/cognitive/free_energy_principle#variational-inference|Variational Inference]]
 | 
						|
    Mathematics:
 | 
						|
        - [[knowledge_base/mathematics/variational_methods|Variational Methods]]
 | 
						|
        - [[knowledge_base/mathematics/information_geometry|Information Geometry]]
 | 
						|
    API: [[docs/api/api_reference#belief-updating-system|API Reference]]
 | 
						|
    """
 | 
						|
    def update_beliefs(self, 
 | 
						|
                      prior: Distribution,
 | 
						|
                      likelihood: Distribution) -> Distribution:
 | 
						|
        """
 | 
						|
        Update beliefs using variational inference.
 | 
						|
        
 | 
						|
        Theory:
 | 
						|
            - [[knowledge_base/cognitive/free_energy_principle#variational-inference|Variational Inference]]
 | 
						|
            - [[knowledge_base/mathematics/kullback_leibler|KL Divergence]]
 | 
						|
        Implementation:
 | 
						|
            - [[docs/api/matrix_operations#gradient-descent|Gradient Descent]]
 | 
						|
            - [[docs/api/optimization_methods#natural-gradients|Natural Gradients]]
 | 
						|
        """
 | 
						|
        # Compute posterior using variational methods
 | 
						|
        posterior = self._compute_posterior(prior, likelihood)
 | 
						|
        
 | 
						|
        # Minimize free energy using natural gradients
 | 
						|
        optimized = self._minimize_free_energy(posterior)
 | 
						|
        
 | 
						|
        return optimized
 | 
						|
    
 | 
						|
    def _compute_posterior(self, prior: Distribution, likelihood: Distribution) -> Distribution:
 | 
						|
        """
 | 
						|
        Compute posterior distribution.
 | 
						|
        
 | 
						|
        Mathematics:
 | 
						|
            - [[knowledge_base/mathematics/bayes_theorem|Bayes Theorem]]
 | 
						|
            - [[knowledge_base/mathematics/exponential_families|Exponential Families]]
 | 
						|
        Implementation:
 | 
						|
            - [[docs/api/probability_utils#distribution-ops|Distribution Operations]]
 | 
						|
        """
 | 
						|
        pass
 | 
						|
    
 | 
						|
    def _minimize_free_energy(self, posterior: Distribution) -> Distribution:
 | 
						|
        """
 | 
						|
        Minimize variational free energy.
 | 
						|
        
 | 
						|
        Mathematics:
 | 
						|
            - [[knowledge_base/mathematics/variational_calculus|Variational Calculus]]
 | 
						|
            - [[knowledge_base/mathematics/optimization_theory|Optimization Theory]]
 | 
						|
        Implementation:
 | 
						|
            - [[docs/api/optimization_methods#variational-optimization|Variational Optimization]]
 | 
						|
        """
 | 
						|
        pass
 | 
						|
```
 | 
						|
 | 
						|
### Policy Selection Pattern
 | 
						|
```python
 | 
						|
# @policy_selection_pattern
 | 
						|
class PolicySelectionPattern:
 | 
						|
    """
 | 
						|
    Implementation pattern for policy selection.
 | 
						|
    
 | 
						|
    Theory:
 | 
						|
        - [[knowledge_base/cognitive/active_inference#policy-selection|Policy Selection]]
 | 
						|
        - [[knowledge_base/cognitive/free_energy_principle#expected-free-energy|Expected Free Energy]]
 | 
						|
    Mathematics:
 | 
						|
        - [[knowledge_base/mathematics/information_theory|Information Theory]]
 | 
						|
        - [[knowledge_base/mathematics/decision_theory|Decision Theory]]
 | 
						|
    API: [[docs/api/api_reference#policy-selection|Policy Selection API]]
 | 
						|
    """
 | 
						|
    def select_policy(self,
 | 
						|
                     beliefs: BeliefState,
 | 
						|
                     policies: List[Policy]) -> Policy:
 | 
						|
        """
 | 
						|
        Select optimal policy using expected free energy.
 | 
						|
        
 | 
						|
        Theory:
 | 
						|
            - [[knowledge_base/cognitive/free_energy_principle#expected-free-energy|Expected Free Energy]]
 | 
						|
            - [[knowledge_base/cognitive/active_inference#action-selection|Action Selection]]
 | 
						|
        Mathematics:
 | 
						|
            - [[knowledge_base/mathematics/expected_utility|Expected Utility]]
 | 
						|
            - [[knowledge_base/mathematics/information_gain|Information Gain]]
 | 
						|
        Implementation:
 | 
						|
            - [[docs/api/optimization_methods#policy-optimization|Policy Optimization]]
 | 
						|
        """
 | 
						|
        # Generate and evaluate policies
 | 
						|
        policies = self._generate_policies()
 | 
						|
        policy_values = self._evaluate_policies(policies, beliefs)
 | 
						|
        
 | 
						|
        # Select optimal policy using softmax
 | 
						|
        optimal_policy = self._select_optimal_policy(policy_values)
 | 
						|
        
 | 
						|
        return optimal_policy
 | 
						|
    
 | 
						|
    def _evaluate_policies(self, 
 | 
						|
                          policies: List[Policy], 
 | 
						|
                          beliefs: BeliefState) -> np.ndarray:
 | 
						|
        """
 | 
						|
        Evaluate policies using expected free energy.
 | 
						|
        
 | 
						|
        Mathematics:
 | 
						|
            - [[knowledge_base/mathematics/expected_free_energy|Expected Free Energy]]
 | 
						|
            - [[knowledge_base/mathematics/path_integral|Path Integral]]
 | 
						|
        Implementation:
 | 
						|
            - [[docs/api/matrix_operations#policy-evaluation|Policy Evaluation]]
 | 
						|
        """
 | 
						|
        pass
 | 
						|
    
 | 
						|
    def _select_optimal_policy(self, 
 | 
						|
                             policy_values: np.ndarray) -> Policy:
 | 
						|
        """
 | 
						|
        Select optimal policy using softmax.
 | 
						|
        
 | 
						|
        Mathematics:
 | 
						|
            - [[knowledge_base/mathematics/softmax|Softmax Function]]
 | 
						|
            - [[knowledge_base/mathematics/temperature_scaling|Temperature Scaling]]
 | 
						|
        Implementation:
 | 
						|
            - [[docs/api/probability_utils#softmax|Softmax Implementation]]
 | 
						|
        """
 | 
						|
        pass
 | 
						|
```
 | 
						|
 | 
						|
### Perception Implementation Pattern
 | 
						|
```python
 | 
						|
# @perception_pattern
 | 
						|
class PerceptionPattern:
 | 
						|
    """
 | 
						|
    Implementation pattern for perceptual processing.
 | 
						|
    
 | 
						|
    Theory:
 | 
						|
        - [[knowledge_base/cognitive/predictive_processing#perception|Predictive Processing]]
 | 
						|
        - [[knowledge_base/cognitive/free_energy_principle#perceptual-inference|Perceptual Inference]]
 | 
						|
    Mathematics:
 | 
						|
        - [[knowledge_base/mathematics/hierarchical_models|Hierarchical Models]]
 | 
						|
        - [[knowledge_base/mathematics/message_passing|Message Passing]]
 | 
						|
    API: [[docs/api/api_reference#perception-system|Perception API]]
 | 
						|
    """
 | 
						|
    def process_input(self, 
 | 
						|
                     sensory_input: Input,
 | 
						|
                     prior_beliefs: BeliefState) -> Observation:
 | 
						|
        """
 | 
						|
        Process sensory input using predictive processing.
 | 
						|
        
 | 
						|
        Theory:
 | 
						|
            - [[knowledge_base/cognitive/predictive_processing#sensory-processing|Sensory Processing]]
 | 
						|
            - [[knowledge_base/cognitive/active_inference#perception|Active Inference Perception]]
 | 
						|
        Mathematics:
 | 
						|
            - [[knowledge_base/mathematics/prediction_error|Prediction Error]]
 | 
						|
            - [[knowledge_base/mathematics/precision_weighting|Precision Weighting]]
 | 
						|
        Implementation:
 | 
						|
            - [[docs/api/matrix_operations#error-computation|Error Computation]]
 | 
						|
            - [[docs/api/probability_utils#precision-scaling|Precision Scaling]]
 | 
						|
        """
 | 
						|
        # Compute prediction errors
 | 
						|
        prediction_errors = self._compute_prediction_errors(
 | 
						|
            sensory_input, prior_beliefs
 | 
						|
        )
 | 
						|
        
 | 
						|
        # Weight by precision
 | 
						|
        weighted_errors = self._weight_by_precision(prediction_errors)
 | 
						|
        
 | 
						|
        # Update beliefs
 | 
						|
        updated_beliefs = self._update_beliefs(weighted_errors)
 | 
						|
        
 | 
						|
        return updated_beliefs
 | 
						|
    
 | 
						|
    def _compute_prediction_errors(self,
 | 
						|
                                 sensory_input: Input,
 | 
						|
                                 predictions: Predictions) -> PredictionErrors:
 | 
						|
        """
 | 
						|
        Compute hierarchical prediction errors.
 | 
						|
        
 | 
						|
        Mathematics:
 | 
						|
            - [[knowledge_base/mathematics/error_propagation|Error Propagation]]
 | 
						|
            - [[knowledge_base/mathematics/hierarchical_inference|Hierarchical Inference]]
 | 
						|
        Implementation:
 | 
						|
            - [[docs/api/matrix_operations#error-propagation|Error Propagation]]
 | 
						|
        """
 | 
						|
        pass
 | 
						|
    
 | 
						|
    def _weight_by_precision(self,
 | 
						|
                           prediction_errors: PredictionErrors) -> WeightedErrors:
 | 
						|
        """
 | 
						|
        Weight prediction errors by precision.
 | 
						|
        
 | 
						|
        Mathematics:
 | 
						|
            - [[knowledge_base/mathematics/precision_matrices|Precision Matrices]]
 | 
						|
            - [[knowledge_base/mathematics/uncertainty_propagation|Uncertainty Propagation]]
 | 
						|
        Implementation:
 | 
						|
            - [[docs/api/matrix_operations#precision-weighting|Precision Weighting]]
 | 
						|
        """
 | 
						|
        pass
 | 
						|
```
 | 
						|
 | 
						|
## Design Patterns
 | 
						|
 | 
						|
### 1. Model-View-Controller
 | 
						|
```python
 | 
						|
# @mvc_pattern
 | 
						|
class ModelPattern:
 | 
						|
    """
 | 
						|
    MVC pattern for cognitive models.
 | 
						|
    
 | 
						|
    Theory: [[knowledge_base/cognitive/cognitive_phenomena#model-architecture|Model Architecture]]
 | 
						|
    """
 | 
						|
    def __init__(self):
 | 
						|
        self.model = GenerativeModel()  # Internal model
 | 
						|
        self.view = ModelView()         # Visualization
 | 
						|
        self.controller = ModelController()  # Control logic
 | 
						|
```
 | 
						|
 | 
						|
### 2. Observer Pattern
 | 
						|
```python
 | 
						|
# @observer_pattern
 | 
						|
class BeliefObserver:
 | 
						|
    """
 | 
						|
    Observer pattern for belief monitoring.
 | 
						|
    
 | 
						|
    Theory: [[knowledge_base/cognitive/predictive_processing#belief-monitoring|Belief Monitoring]]
 | 
						|
    """
 | 
						|
    def update(self, beliefs: BeliefState):
 | 
						|
        """Update on belief changes."""
 | 
						|
        self._log_beliefs(beliefs)
 | 
						|
        self._visualize_beliefs(beliefs)
 | 
						|
```
 | 
						|
 | 
						|
## Integration Patterns
 | 
						|
 | 
						|
### 1. Component Integration
 | 
						|
```python
 | 
						|
# @integration_pattern
 | 
						|
class IntegrationPattern:
 | 
						|
    """
 | 
						|
    Pattern for component integration.
 | 
						|
    
 | 
						|
    See [[docs/guides/system_integration|System Integration]]
 | 
						|
    """
 | 
						|
    def __init__(self):
 | 
						|
        self.belief_component = BeliefComponent()
 | 
						|
        self.action_component = ActionComponent()
 | 
						|
        self.perception_component = PerceptionComponent()
 | 
						|
```
 | 
						|
 | 
						|
### 2. Pipeline Pattern
 | 
						|
```python
 | 
						|
# @pipeline_pattern
 | 
						|
class ProcessingPipeline:
 | 
						|
    """
 | 
						|
    Pattern for information processing pipeline.
 | 
						|
    
 | 
						|
    Theory: [[knowledge_base/cognitive/predictive_processing#processing-hierarchy|Processing Hierarchy]]
 | 
						|
    """
 | 
						|
    def process(self, input_data: Data) -> Result:
 | 
						|
        """Process data through pipeline stages."""
 | 
						|
        preprocessed = self._preprocess(input_data)
 | 
						|
        processed = self._process(preprocessed)
 | 
						|
        postprocessed = self._postprocess(processed)
 | 
						|
        return postprocessed
 | 
						|
```
 | 
						|
 | 
						|
## Validation Patterns
 | 
						|
 | 
						|
### 1. Model Validation
 | 
						|
```python
 | 
						|
# @validation_pattern
 | 
						|
class ValidationPattern:
 | 
						|
    """
 | 
						|
    Pattern for model validation.
 | 
						|
    
 | 
						|
    See [[docs/guides/validation_guide|Validation Guide]]
 | 
						|
    """
 | 
						|
    def validate_model(self, model: Model) -> ValidationResult:
 | 
						|
        """Validate model components and behavior."""
 | 
						|
        structure_valid = self._validate_structure(model)
 | 
						|
        behavior_valid = self._validate_behavior(model)
 | 
						|
        performance_valid = self._validate_performance(model)
 | 
						|
        return ValidationResult(structure_valid, behavior_valid, performance_valid)
 | 
						|
```
 | 
						|
 | 
						|
### 2. Testing Pattern
 | 
						|
```python
 | 
						|
# @testing_pattern
 | 
						|
class TestingPattern:
 | 
						|
    """
 | 
						|
    Pattern for comprehensive testing.
 | 
						|
    
 | 
						|
    See [[docs/guides/testing_guide|Testing Guide]]
 | 
						|
    """
 | 
						|
    def test_suite(self) -> TestResults:
 | 
						|
        """Run complete test suite."""
 | 
						|
        unit_results = self._run_unit_tests()
 | 
						|
        integration_results = self._run_integration_tests()
 | 
						|
        system_results = self._run_system_tests()
 | 
						|
        return TestResults(unit_results, integration_results, system_results)
 | 
						|
```
 | 
						|
 | 
						|
## Best Practices
 | 
						|
 | 
						|
### 1. Code Organization
 | 
						|
- Follow [[docs/guides/code_organization|Code Organization Guide]]
 | 
						|
- Use [[docs/guides/naming_conventions|Naming Conventions]]
 | 
						|
- Implement [[docs/guides/documentation_standards|Documentation Standards]]
 | 
						|
 | 
						|
### 2. Performance Optimization
 | 
						|
- Follow [[docs/guides/performance_optimization|Optimization Guide]]
 | 
						|
- Use [[docs/guides/profiling_guide|Profiling Guide]]
 | 
						|
- Monitor [[docs/guides/performance_metrics|Performance Metrics]]
 | 
						|
 | 
						|
### 3. Quality Assurance
 | 
						|
- Implement [[docs/guides/testing_guide|Testing Guidelines]]
 | 
						|
- Follow [[docs/guides/code_review|Code Review Process]]
 | 
						|
- Use [[docs/guides/validation_framework|Validation Framework]]
 | 
						|
 | 
						|
## Related Documentation
 | 
						|
- [[knowledge_base/cognitive/cognitive_science|Cognitive Science Theory]]
 | 
						|
- [[docs/api/api_reference|API Reference]]
 | 
						|
- [[docs/guides/system_integration|System Integration]]
 | 
						|
- [[docs/guides/validation_guide|Validation Guide]]
 | 
						|
 | 
						|
## References
 | 
						|
- [[knowledge_base/cognitive/active_inference|Active Inference]]
 | 
						|
- [[knowledge_base/cognitive/free_energy_principle|Free Energy Principle]]
 | 
						|
- [[knowledge_base/cognitive/predictive_processing|Predictive Processing]]
 | 
						|
- [[docs/concepts/theoretical_foundations|Theoretical Foundations]]  |