зеркало из
https://github.com/docxology/cognitive.git
synced 2025-11-01 13:46:05 +02:00
324 строки
8.8 KiB
Markdown
324 строки
8.8 KiB
Markdown
---
|
|
title: Precision Mechanisms Implementation
|
|
type: implementation_guide
|
|
status: stable
|
|
created: 2024-02-12
|
|
tags:
|
|
- implementation
|
|
- predictive-processing
|
|
- precision
|
|
semantic_relations:
|
|
- type: implements
|
|
links: [[../../learning_paths/predictive_processing]]
|
|
- type: relates
|
|
links:
|
|
- [[predictive_network]]
|
|
- [[error_propagation]]
|
|
---
|
|
|
|
# Precision Mechanisms Implementation
|
|
|
|
## Overview
|
|
|
|
This guide details the implementation of precision mechanisms in predictive processing networks, focusing on uncertainty estimation and attention modulation.
|
|
|
|
## Core Components
|
|
|
|
### Precision Estimation
|
|
```python
|
|
class PrecisionEstimator:
|
|
def __init__(self,
|
|
size: int,
|
|
initial_precision: float = 1.0,
|
|
min_precision: float = 1e-6,
|
|
max_precision: float = 1e6):
|
|
"""Initialize precision estimator.
|
|
|
|
Args:
|
|
size: Dimensionality of precision
|
|
initial_precision: Initial precision value
|
|
min_precision: Minimum precision value
|
|
max_precision: Maximum precision value
|
|
"""
|
|
self.size = size
|
|
self.min_precision = min_precision
|
|
self.max_precision = max_precision
|
|
|
|
# Initialize precision parameters
|
|
self.log_precision = nn.Parameter(
|
|
torch.full((size,), math.log(initial_precision))
|
|
)
|
|
|
|
def get_precision(self) -> torch.Tensor:
|
|
"""Get current precision values."""
|
|
precision = torch.exp(self.log_precision)
|
|
return torch.clamp(
|
|
precision,
|
|
min=self.min_precision,
|
|
max=self.max_precision
|
|
)
|
|
```
|
|
|
|
### Attention Modulation
|
|
```python
|
|
class AttentionMechanism:
|
|
def __init__(self,
|
|
input_size: int,
|
|
hidden_size: int):
|
|
"""Initialize attention mechanism.
|
|
|
|
Args:
|
|
input_size: Size of input features
|
|
hidden_size: Size of attention hidden state
|
|
"""
|
|
self.attention_net = nn.Sequential(
|
|
nn.Linear(input_size, hidden_size),
|
|
nn.ReLU(),
|
|
nn.Linear(hidden_size, input_size),
|
|
nn.Sigmoid()
|
|
)
|
|
|
|
def compute_attention(self,
|
|
inputs: torch.Tensor) -> torch.Tensor:
|
|
"""Compute attention weights.
|
|
|
|
Args:
|
|
inputs: Input features
|
|
|
|
Returns:
|
|
attention: Attention weights
|
|
"""
|
|
return self.attention_net(inputs)
|
|
```
|
|
|
|
## Implementation
|
|
|
|
### Precision Layer
|
|
```python
|
|
class PrecisionLayer(nn.Module):
|
|
def __init__(self,
|
|
size: int,
|
|
use_attention: bool = True):
|
|
"""Initialize precision layer.
|
|
|
|
Args:
|
|
size: Feature dimensionality
|
|
use_attention: Whether to use attention
|
|
"""
|
|
super().__init__()
|
|
|
|
# Precision estimation
|
|
self.precision_estimator = PrecisionEstimator(size)
|
|
|
|
# Attention mechanism (optional)
|
|
self.use_attention = use_attention
|
|
if use_attention:
|
|
self.attention = AttentionMechanism(size, size * 2)
|
|
|
|
def forward(self,
|
|
inputs: torch.Tensor,
|
|
errors: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""Forward pass with precision weighting.
|
|
|
|
Args:
|
|
inputs: Input features
|
|
errors: Prediction errors
|
|
|
|
Returns:
|
|
weighted_inputs: Precision-weighted inputs
|
|
weighted_errors: Precision-weighted errors
|
|
"""
|
|
# Get base precision
|
|
precision = self.precision_estimator.get_precision()
|
|
|
|
# Apply attention modulation
|
|
if self.use_attention:
|
|
attention = self.attention.compute_attention(inputs)
|
|
precision = precision * attention
|
|
|
|
# Apply precision weighting
|
|
weighted_inputs = inputs * precision
|
|
weighted_errors = errors * precision
|
|
|
|
return weighted_inputs, weighted_errors
|
|
```
|
|
|
|
### Precision Updates
|
|
```python
|
|
def update_precision(self,
|
|
errors: torch.Tensor,
|
|
learning_rate: float = 0.01):
|
|
"""Update precision estimates based on errors.
|
|
|
|
Args:
|
|
errors: Prediction errors
|
|
learning_rate: Learning rate for updates
|
|
"""
|
|
# Compute precision gradients
|
|
with torch.enable_grad():
|
|
# Negative free energy
|
|
F = -0.5 * torch.sum(errors ** 2 * self.get_precision())
|
|
F -= 0.5 * torch.sum(torch.log(2 * math.pi / self.get_precision()))
|
|
|
|
# Compute gradients
|
|
grads = torch.autograd.grad(F, self.log_precision)[0]
|
|
|
|
# Update precision parameters
|
|
with torch.no_grad():
|
|
self.log_precision += learning_rate * grads
|
|
```
|
|
|
|
## Advanced Features
|
|
|
|
### Hierarchical Precision
|
|
```python
|
|
class HierarchicalPrecision:
|
|
def __init__(self, layer_sizes: List[int]):
|
|
"""Initialize hierarchical precision.
|
|
|
|
Args:
|
|
layer_sizes: List of layer sizes
|
|
"""
|
|
self.precision_layers = nn.ModuleList([
|
|
PrecisionLayer(size) for size in layer_sizes
|
|
])
|
|
|
|
def forward(self,
|
|
inputs: List[torch.Tensor],
|
|
errors: List[torch.Tensor]) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
|
|
"""Forward pass through hierarchy.
|
|
|
|
Args:
|
|
inputs: List of layer inputs
|
|
errors: List of prediction errors
|
|
|
|
Returns:
|
|
weighted_inputs: Precision-weighted inputs
|
|
weighted_errors: Precision-weighted errors
|
|
"""
|
|
weighted_inputs = []
|
|
weighted_errors = []
|
|
|
|
for layer, input_data, error in zip(
|
|
self.precision_layers, inputs, errors
|
|
):
|
|
w_input, w_error = layer(input_data, error)
|
|
weighted_inputs.append(w_input)
|
|
weighted_errors.append(w_error)
|
|
|
|
return weighted_inputs, weighted_errors
|
|
```
|
|
|
|
### Adaptive Precision
|
|
```python
|
|
class AdaptivePrecision(PrecisionEstimator):
|
|
def __init__(self,
|
|
size: int,
|
|
adaptation_rate: float = 0.1):
|
|
"""Initialize adaptive precision.
|
|
|
|
Args:
|
|
size: Feature dimensionality
|
|
adaptation_rate: Rate of precision adaptation
|
|
"""
|
|
super().__init__(size)
|
|
self.adaptation_rate = adaptation_rate
|
|
self.error_history = []
|
|
|
|
def adapt_precision(self, error: torch.Tensor):
|
|
"""Adapt precision based on error history.
|
|
|
|
Args:
|
|
error: Current prediction error
|
|
"""
|
|
# Update error history
|
|
self.error_history.append(error.detach())
|
|
if len(self.error_history) > 100:
|
|
self.error_history.pop(0)
|
|
|
|
# Compute error statistics
|
|
error_var = torch.var(torch.stack(self.error_history), dim=0)
|
|
|
|
# Update precision
|
|
target_precision = 1.0 / (error_var + self.min_precision)
|
|
current_precision = self.get_precision()
|
|
|
|
# Smooth update
|
|
new_precision = (
|
|
(1 - self.adaptation_rate) * current_precision +
|
|
self.adaptation_rate * target_precision
|
|
)
|
|
|
|
# Update log precision
|
|
self.log_precision.data = torch.log(new_precision)
|
|
```
|
|
|
|
## Usage Examples
|
|
|
|
### Basic Usage
|
|
```python
|
|
# Initialize precision layer
|
|
precision_layer = PrecisionLayer(size=64)
|
|
|
|
# Forward pass with precision
|
|
inputs = torch.randn(32, 64)
|
|
errors = torch.randn(32, 64)
|
|
weighted_inputs, weighted_errors = precision_layer(inputs, errors)
|
|
|
|
# Update precision
|
|
precision_layer.update_precision(errors)
|
|
```
|
|
|
|
### Hierarchical Usage
|
|
```python
|
|
# Initialize hierarchical precision
|
|
hierarchical_precision = HierarchicalPrecision([64, 32, 16])
|
|
|
|
# Process multiple layers
|
|
layer_inputs = [torch.randn(32, size) for size in [64, 32, 16]]
|
|
layer_errors = [torch.randn(32, size) for size in [64, 32, 16]]
|
|
|
|
# Forward pass
|
|
weighted_inputs, weighted_errors = hierarchical_precision(
|
|
layer_inputs, layer_errors
|
|
)
|
|
```
|
|
|
|
## Best Practices
|
|
|
|
### Initialization
|
|
1. Set reasonable initial precision
|
|
2. Use log-space for stability
|
|
3. Implement bounds checking
|
|
4. Initialize attention carefully
|
|
|
|
### Training
|
|
1. Monitor precision values
|
|
2. Adapt learning rates
|
|
3. Track error statistics
|
|
4. Validate attention maps
|
|
|
|
### Optimization
|
|
1. Use vectorized operations
|
|
2. Implement batch processing
|
|
3. Optimize memory usage
|
|
4. Profile computations
|
|
|
|
## Common Issues
|
|
|
|
### Numerical Issues
|
|
1. Precision overflow
|
|
2. Underflow in calculations
|
|
3. Gradient instability
|
|
4. NaN values
|
|
|
|
### Solutions
|
|
1. Use log-space operations
|
|
2. Implement value clipping
|
|
3. Add numerical safeguards
|
|
4. Monitor statistics
|
|
|
|
## Related Documentation
|
|
- [[predictive_network]]
|
|
- [[error_propagation]]
|
|
- [[temporal_models]] |