cognitive/docs/guides/implementation/precision_mechanisms.md
Daniel Ari Friedman 7ca29024d8 Updates
2025-02-12 13:23:51 -08:00

324 строки
8.8 KiB
Markdown

---
title: Precision Mechanisms Implementation
type: implementation_guide
status: stable
created: 2024-02-12
tags:
- implementation
- predictive-processing
- precision
semantic_relations:
- type: implements
links: [[../../learning_paths/predictive_processing]]
- type: relates
links:
- [[predictive_network]]
- [[error_propagation]]
---
# Precision Mechanisms Implementation
## Overview
This guide details the implementation of precision mechanisms in predictive processing networks, focusing on uncertainty estimation and attention modulation.
## Core Components
### Precision Estimation
```python
class PrecisionEstimator:
def __init__(self,
size: int,
initial_precision: float = 1.0,
min_precision: float = 1e-6,
max_precision: float = 1e6):
"""Initialize precision estimator.
Args:
size: Dimensionality of precision
initial_precision: Initial precision value
min_precision: Minimum precision value
max_precision: Maximum precision value
"""
self.size = size
self.min_precision = min_precision
self.max_precision = max_precision
# Initialize precision parameters
self.log_precision = nn.Parameter(
torch.full((size,), math.log(initial_precision))
)
def get_precision(self) -> torch.Tensor:
"""Get current precision values."""
precision = torch.exp(self.log_precision)
return torch.clamp(
precision,
min=self.min_precision,
max=self.max_precision
)
```
### Attention Modulation
```python
class AttentionMechanism:
def __init__(self,
input_size: int,
hidden_size: int):
"""Initialize attention mechanism.
Args:
input_size: Size of input features
hidden_size: Size of attention hidden state
"""
self.attention_net = nn.Sequential(
nn.Linear(input_size, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, input_size),
nn.Sigmoid()
)
def compute_attention(self,
inputs: torch.Tensor) -> torch.Tensor:
"""Compute attention weights.
Args:
inputs: Input features
Returns:
attention: Attention weights
"""
return self.attention_net(inputs)
```
## Implementation
### Precision Layer
```python
class PrecisionLayer(nn.Module):
def __init__(self,
size: int,
use_attention: bool = True):
"""Initialize precision layer.
Args:
size: Feature dimensionality
use_attention: Whether to use attention
"""
super().__init__()
# Precision estimation
self.precision_estimator = PrecisionEstimator(size)
# Attention mechanism (optional)
self.use_attention = use_attention
if use_attention:
self.attention = AttentionMechanism(size, size * 2)
def forward(self,
inputs: torch.Tensor,
errors: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""Forward pass with precision weighting.
Args:
inputs: Input features
errors: Prediction errors
Returns:
weighted_inputs: Precision-weighted inputs
weighted_errors: Precision-weighted errors
"""
# Get base precision
precision = self.precision_estimator.get_precision()
# Apply attention modulation
if self.use_attention:
attention = self.attention.compute_attention(inputs)
precision = precision * attention
# Apply precision weighting
weighted_inputs = inputs * precision
weighted_errors = errors * precision
return weighted_inputs, weighted_errors
```
### Precision Updates
```python
def update_precision(self,
errors: torch.Tensor,
learning_rate: float = 0.01):
"""Update precision estimates based on errors.
Args:
errors: Prediction errors
learning_rate: Learning rate for updates
"""
# Compute precision gradients
with torch.enable_grad():
# Negative free energy
F = -0.5 * torch.sum(errors ** 2 * self.get_precision())
F -= 0.5 * torch.sum(torch.log(2 * math.pi / self.get_precision()))
# Compute gradients
grads = torch.autograd.grad(F, self.log_precision)[0]
# Update precision parameters
with torch.no_grad():
self.log_precision += learning_rate * grads
```
## Advanced Features
### Hierarchical Precision
```python
class HierarchicalPrecision:
def __init__(self, layer_sizes: List[int]):
"""Initialize hierarchical precision.
Args:
layer_sizes: List of layer sizes
"""
self.precision_layers = nn.ModuleList([
PrecisionLayer(size) for size in layer_sizes
])
def forward(self,
inputs: List[torch.Tensor],
errors: List[torch.Tensor]) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
"""Forward pass through hierarchy.
Args:
inputs: List of layer inputs
errors: List of prediction errors
Returns:
weighted_inputs: Precision-weighted inputs
weighted_errors: Precision-weighted errors
"""
weighted_inputs = []
weighted_errors = []
for layer, input_data, error in zip(
self.precision_layers, inputs, errors
):
w_input, w_error = layer(input_data, error)
weighted_inputs.append(w_input)
weighted_errors.append(w_error)
return weighted_inputs, weighted_errors
```
### Adaptive Precision
```python
class AdaptivePrecision(PrecisionEstimator):
def __init__(self,
size: int,
adaptation_rate: float = 0.1):
"""Initialize adaptive precision.
Args:
size: Feature dimensionality
adaptation_rate: Rate of precision adaptation
"""
super().__init__(size)
self.adaptation_rate = adaptation_rate
self.error_history = []
def adapt_precision(self, error: torch.Tensor):
"""Adapt precision based on error history.
Args:
error: Current prediction error
"""
# Update error history
self.error_history.append(error.detach())
if len(self.error_history) > 100:
self.error_history.pop(0)
# Compute error statistics
error_var = torch.var(torch.stack(self.error_history), dim=0)
# Update precision
target_precision = 1.0 / (error_var + self.min_precision)
current_precision = self.get_precision()
# Smooth update
new_precision = (
(1 - self.adaptation_rate) * current_precision +
self.adaptation_rate * target_precision
)
# Update log precision
self.log_precision.data = torch.log(new_precision)
```
## Usage Examples
### Basic Usage
```python
# Initialize precision layer
precision_layer = PrecisionLayer(size=64)
# Forward pass with precision
inputs = torch.randn(32, 64)
errors = torch.randn(32, 64)
weighted_inputs, weighted_errors = precision_layer(inputs, errors)
# Update precision
precision_layer.update_precision(errors)
```
### Hierarchical Usage
```python
# Initialize hierarchical precision
hierarchical_precision = HierarchicalPrecision([64, 32, 16])
# Process multiple layers
layer_inputs = [torch.randn(32, size) for size in [64, 32, 16]]
layer_errors = [torch.randn(32, size) for size in [64, 32, 16]]
# Forward pass
weighted_inputs, weighted_errors = hierarchical_precision(
layer_inputs, layer_errors
)
```
## Best Practices
### Initialization
1. Set reasonable initial precision
2. Use log-space for stability
3. Implement bounds checking
4. Initialize attention carefully
### Training
1. Monitor precision values
2. Adapt learning rates
3. Track error statistics
4. Validate attention maps
### Optimization
1. Use vectorized operations
2. Implement batch processing
3. Optimize memory usage
4. Profile computations
## Common Issues
### Numerical Issues
1. Precision overflow
2. Underflow in calculations
3. Gradient instability
4. NaN values
### Solutions
1. Use log-space operations
2. Implement value clipping
3. Add numerical safeguards
4. Monitor statistics
## Related Documentation
- [[predictive_network]]
- [[error_propagation]]
- [[temporal_models]]