cognitive/docs/guides/learning_paths/active_inference_biological_learning_path.md
Daniel Ari Friedman dc483bebf4 Updates
2025-02-12 16:10:29 -08:00

7.1 KiB

title type status created complexity processing_priority tags semantic_relations
Active Inference in Biological Intelligence Learning Path learning_path stable 2024-03-15 advanced 1
active-inference
biological-intelligence
evolutionary-systems
natural-computation
type links
specializes
active_inference_learning_path
type links
relates
biological_systems_learning_path
evolutionary_computation_learning_path
natural_intelligence_learning_path

Active Inference in Biological Intelligence Learning Path

Overview

This specialized path focuses on applying Active Inference to understand and model biological intelligence across scales, from cellular to organismal levels. It integrates evolutionary principles, biological computation, and natural intelligence.

Prerequisites

1. Biological Foundations (4 weeks)

  • Biological Systems

    • Cellular biology
    • Neural systems
    • Organismal behavior
    • Evolutionary processes
  • Natural Computation

    • Biological information processing
    • Natural algorithms
    • Collective computation
    • Adaptive systems
  • Evolutionary Theory

    • Natural selection
    • Adaptation mechanisms
    • Fitness landscapes
    • Population dynamics
  • Systems Biology

    • Molecular networks
    • Cellular signaling
    • Metabolic pathways
    • Regulatory systems

2. Technical Skills (2 weeks)

  • Biological Tools
    • Bioinformatics
    • Systems modeling
    • Network analysis
    • Evolutionary simulation

Core Learning Path

1. Biological Intelligence Modeling (4 weeks)

Week 1-2: Natural State Inference

class BiologicalStateEstimator:
    def __init__(self,
                 system_levels: List[str],
                 adaptation_rate: float):
        """Initialize biological state estimator."""
        self.system_hierarchy = SystemHierarchy(system_levels)
        self.adaptation_mechanism = AdaptationMechanism(adaptation_rate)
        self.homeostasis_monitor = HomeostasisMonitor()
        
    def estimate_state(self,
                      environmental_signals: torch.Tensor,
                      internal_state: torch.Tensor) -> BiologicalState:
        """Estimate biological system state."""
        current_state = self.system_hierarchy.integrate_signals(
            environmental_signals, internal_state
        )
        adapted_state = self.adaptation_mechanism.update(current_state)
        return self.homeostasis_monitor.validate_state(adapted_state)

Week 3-4: Natural Decision Making

class BiologicalDecisionMaker:
    def __init__(self,
                 behavior_space: BehaviorSpace,
                 fitness_function: FitnessFunction):
        """Initialize biological decision maker."""
        self.behavior_repertoire = BehaviorRepertoire(behavior_space)
        self.fitness_evaluator = fitness_function
        self.adaptation_policy = AdaptationPolicy()
        
    def select_behavior(self,
                       environmental_state: torch.Tensor,
                       internal_needs: torch.Tensor) -> Behavior:
        """Select adaptive behavior."""
        options = self.behavior_repertoire.generate_options()
        fitness_scores = self.evaluate_fitness(options, environmental_state)
        return self.adaptation_policy.select_action(options, fitness_scores)

2. Natural Applications (6 weeks)

Week 1-2: Cellular Intelligence

  • Molecular computation
  • Cellular decision-making
  • Metabolic adaptation
  • Signal processing

Week 3-4: Neural Intelligence

  • Neural computation
  • Synaptic plasticity
  • Network adaptation
  • Information integration

Week 5-6: Organismal Intelligence

  • Behavioral adaptation
  • Learning mechanisms
  • Memory formation
  • Social behavior

3. Evolutionary Intelligence (4 weeks)

Week 1-2: Evolutionary Learning

class EvolutionaryLearner:
    def __init__(self,
                 population_size: int,
                 mutation_rate: float):
        """Initialize evolutionary learning system."""
        self.population = Population(population_size)
        self.selection = NaturalSelection()
        self.variation = VariationOperator(mutation_rate)
        
    def evolve_generation(self,
                         environment: Environment) -> Population:
        """Evolve population through one generation."""
        fitness = self.evaluate_fitness(self.population, environment)
        selected = self.selection.select(self.population, fitness)
        return self.variation.create_offspring(selected)

Week 3-4: Adaptive Systems

  • Population dynamics
  • Fitness landscapes
  • Evolutionary strategies
  • Collective adaptation

4. Advanced Topics (4 weeks)

Week 1-2: Multi-scale Integration

class BiologicalHierarchy:
    def __init__(self,
                 scale_levels: List[ScaleLevel],
                 integration_params: IntegrationParams):
        """Initialize biological hierarchy."""
        self.levels = scale_levels
        self.integrator = ScaleIntegrator(integration_params)
        self.coordinator = SystemCoordinator()
        
    def process_information(self,
                          inputs: Dict[str, torch.Tensor]) -> SystemState:
        """Process information across scales."""
        level_states = {level: level.process(inputs[level.name])
                       for level in self.levels}
        integrated_state = self.integrator.combine_states(level_states)
        return self.coordinator.coordinate_responses(integrated_state)

Week 3-4: Natural Computation

  • Biological algorithms
  • Natural optimization
  • Collective intelligence
  • Emergent computation

Projects

Biological Projects

  1. Cellular Systems

    • Molecular networks
    • Cellular decisions
    • Metabolic adaptation
    • Signal integration
  2. Neural Systems

    • Neural plasticity
    • Network adaptation
    • Information processing
    • Learning mechanisms

Advanced Projects

  1. Evolutionary Systems

    • Population dynamics
    • Adaptive strategies
    • Fitness landscapes
    • Collective behavior
  2. Natural Intelligence

    • Biological computation
    • Adaptive systems
    • Multi-scale integration
    • Emergent behavior

Resources

Academic Resources

  1. Research Papers

    • Biological Intelligence
    • Natural Computation
    • Evolutionary Systems
    • Systems Biology
  2. Books

    • Biological Systems
    • Natural Intelligence
    • Evolutionary Theory
    • Complex Adaptation

Technical Resources

  1. Software Tools

    • Bioinformatics Tools
    • Systems Modeling
    • Network Analysis
    • Evolutionary Simulation
  2. Biological Resources

    • Molecular Databases
    • Neural Data
    • Behavioral Records
    • Evolutionary Models

Next Steps

Advanced Topics

  1. biological_systems_learning_path
  2. evolutionary_computation_learning_path
  3. natural_intelligence_learning_path

Research Directions

  1. research_guides/biological_intelligence
  2. research_guides/natural_computation
  3. research_guides/evolutionary_systems