зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-29 12:16:04 +02:00
7.1 KiB
7.1 KiB
| title | type | status | created | complexity | processing_priority | tags | semantic_relations | |||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Active Inference in Biological Intelligence Learning Path | learning_path | stable | 2024-03-15 | advanced | 1 |
|
|
Active Inference in Biological Intelligence Learning Path
Overview
This specialized path focuses on applying Active Inference to understand and model biological intelligence across scales, from cellular to organismal levels. It integrates evolutionary principles, biological computation, and natural intelligence.
Prerequisites
1. Biological Foundations (4 weeks)
-
Biological Systems
- Cellular biology
- Neural systems
- Organismal behavior
- Evolutionary processes
-
Natural Computation
- Biological information processing
- Natural algorithms
- Collective computation
- Adaptive systems
-
Evolutionary Theory
- Natural selection
- Adaptation mechanisms
- Fitness landscapes
- Population dynamics
-
Systems Biology
- Molecular networks
- Cellular signaling
- Metabolic pathways
- Regulatory systems
2. Technical Skills (2 weeks)
- Biological Tools
- Bioinformatics
- Systems modeling
- Network analysis
- Evolutionary simulation
Core Learning Path
1. Biological Intelligence Modeling (4 weeks)
Week 1-2: Natural State Inference
class BiologicalStateEstimator:
def __init__(self,
system_levels: List[str],
adaptation_rate: float):
"""Initialize biological state estimator."""
self.system_hierarchy = SystemHierarchy(system_levels)
self.adaptation_mechanism = AdaptationMechanism(adaptation_rate)
self.homeostasis_monitor = HomeostasisMonitor()
def estimate_state(self,
environmental_signals: torch.Tensor,
internal_state: torch.Tensor) -> BiologicalState:
"""Estimate biological system state."""
current_state = self.system_hierarchy.integrate_signals(
environmental_signals, internal_state
)
adapted_state = self.adaptation_mechanism.update(current_state)
return self.homeostasis_monitor.validate_state(adapted_state)
Week 3-4: Natural Decision Making
class BiologicalDecisionMaker:
def __init__(self,
behavior_space: BehaviorSpace,
fitness_function: FitnessFunction):
"""Initialize biological decision maker."""
self.behavior_repertoire = BehaviorRepertoire(behavior_space)
self.fitness_evaluator = fitness_function
self.adaptation_policy = AdaptationPolicy()
def select_behavior(self,
environmental_state: torch.Tensor,
internal_needs: torch.Tensor) -> Behavior:
"""Select adaptive behavior."""
options = self.behavior_repertoire.generate_options()
fitness_scores = self.evaluate_fitness(options, environmental_state)
return self.adaptation_policy.select_action(options, fitness_scores)
2. Natural Applications (6 weeks)
Week 1-2: Cellular Intelligence
- Molecular computation
- Cellular decision-making
- Metabolic adaptation
- Signal processing
Week 3-4: Neural Intelligence
- Neural computation
- Synaptic plasticity
- Network adaptation
- Information integration
Week 5-6: Organismal Intelligence
- Behavioral adaptation
- Learning mechanisms
- Memory formation
- Social behavior
3. Evolutionary Intelligence (4 weeks)
Week 1-2: Evolutionary Learning
class EvolutionaryLearner:
def __init__(self,
population_size: int,
mutation_rate: float):
"""Initialize evolutionary learning system."""
self.population = Population(population_size)
self.selection = NaturalSelection()
self.variation = VariationOperator(mutation_rate)
def evolve_generation(self,
environment: Environment) -> Population:
"""Evolve population through one generation."""
fitness = self.evaluate_fitness(self.population, environment)
selected = self.selection.select(self.population, fitness)
return self.variation.create_offspring(selected)
Week 3-4: Adaptive Systems
- Population dynamics
- Fitness landscapes
- Evolutionary strategies
- Collective adaptation
4. Advanced Topics (4 weeks)
Week 1-2: Multi-scale Integration
class BiologicalHierarchy:
def __init__(self,
scale_levels: List[ScaleLevel],
integration_params: IntegrationParams):
"""Initialize biological hierarchy."""
self.levels = scale_levels
self.integrator = ScaleIntegrator(integration_params)
self.coordinator = SystemCoordinator()
def process_information(self,
inputs: Dict[str, torch.Tensor]) -> SystemState:
"""Process information across scales."""
level_states = {level: level.process(inputs[level.name])
for level in self.levels}
integrated_state = self.integrator.combine_states(level_states)
return self.coordinator.coordinate_responses(integrated_state)
Week 3-4: Natural Computation
- Biological algorithms
- Natural optimization
- Collective intelligence
- Emergent computation
Projects
Biological Projects
-
Cellular Systems
- Molecular networks
- Cellular decisions
- Metabolic adaptation
- Signal integration
-
Neural Systems
- Neural plasticity
- Network adaptation
- Information processing
- Learning mechanisms
Advanced Projects
-
Evolutionary Systems
- Population dynamics
- Adaptive strategies
- Fitness landscapes
- Collective behavior
-
Natural Intelligence
- Biological computation
- Adaptive systems
- Multi-scale integration
- Emergent behavior
Resources
Academic Resources
-
Research Papers
- Biological Intelligence
- Natural Computation
- Evolutionary Systems
- Systems Biology
-
Books
- Biological Systems
- Natural Intelligence
- Evolutionary Theory
- Complex Adaptation
Technical Resources
-
Software Tools
- Bioinformatics Tools
- Systems Modeling
- Network Analysis
- Evolutionary Simulation
-
Biological Resources
- Molecular Databases
- Neural Data
- Behavioral Records
- Evolutionary Models
Next Steps
Advanced Topics
- biological_systems_learning_path
- evolutionary_computation_learning_path
- natural_intelligence_learning_path