cognitive/docs/guides/learning_paths/active_inference_learning_path.md
Daniel Ari Friedman 163aec6989 Updates
2025-02-12 14:04:48 -08:00

7.7 KiB

title type status created complexity processing_priority tags semantic_relations
Active Inference Learning Path learning_path stable 2024-03-15 advanced 1
active-inference
free-energy-principle
cognitive-science
machine-learning
type links
foundation_for
predictive_processing_learning_path
cognitive_architecture_learning_path
type links
implements
free_energy_principle_learning_path
variational_inference_learning_path
type links
relates
dynamical_systems_learning_path
stochastic_processes_learning_path
information_theory_learning_path

Active Inference Learning Path

Overview

This learning path provides a comprehensive guide to understanding and implementing Active Inference, from mathematical foundations to practical applications. Active Inference is a unifying framework for understanding perception, learning, and action in biological and artificial systems.

Prerequisites

1. Mathematics (4 weeks)

2. Programming (2 weeks)

  • Python Fundamentals

    • NumPy/SciPy
    • PyTorch/JAX
    • Object-oriented programming
    • Scientific computing
  • Software Engineering

    • Version control
    • Testing
    • Documentation
    • Best practices

Core Learning Path

1. Theoretical Foundations (4 weeks)

Week 1-2: Free Energy Principle

  • Variational Free Energy
    def compute_free_energy(q_dist, p_dist, obs):
        """Compute variational free energy."""
        expected_log_likelihood = compute_expected_ll(q_dist, p_dist, obs)
        kl_divergence = compute_kl(q_dist, p_dist)
        return -expected_log_likelihood + kl_divergence
    
  • Markov Blankets
  • Self-organization
  • Information Geometry

Week 3-4: Active Inference

  • Expected Free Energy
    def compute_expected_free_energy(policy, model):
        """Compute expected free energy for policy."""
        ambiguity = compute_ambiguity(policy, model)
        risk = compute_risk(policy, model)
        return ambiguity + risk
    
  • Policy Selection
  • Precision Engineering
  • Message Passing

2. Implementation (6 weeks)

Week 1-2: Core Components

  • Generative Models
    class GenerativeModel:
        def __init__(self,
                    hidden_dims: List[int],
                    obs_dim: int):
            """Initialize generative model."""
            self.hidden_states = [
                torch.zeros(dim) for dim in hidden_dims
            ]
            self.obs_model = ObservationModel(hidden_dims[-1], obs_dim)
            self.trans_model = TransitionModel(hidden_dims)
    
        def generate(self, policy: torch.Tensor) -> torch.Tensor:
            """Generate observations under policy."""
            states = self.propagate_states(policy)
            return self.obs_model(states)
    
  • Variational Inference
  • Policy Networks
  • Precision Parameters

Week 3-4: Agent Implementation

  • Perception
    class ActiveInferenceAgent:
        def __init__(self,
                    model: GenerativeModel,
                    learning_rate: float = 0.01):
            """Initialize active inference agent."""
            self.model = model
            self.lr = learning_rate
            self.beliefs = initialize_beliefs()
    
        def infer_states(self, obs: torch.Tensor) -> torch.Tensor:
            """Perform state inference."""
            for _ in range(self.inference_steps):
                pred_error = self.compute_prediction_error(obs)
                self.update_beliefs(pred_error)
            return self.beliefs
    
  • Action Selection
  • Learning
  • Memory

Week 5-6: Advanced Features

  • Hierarchical Models
  • Active Learning
  • Meta-learning
  • Adaptive Behavior

3. Applications (4 weeks)

Week 1-2: Cognitive Tasks

  • Perception Tasks
    class PerceptionTask:
        def __init__(self,
                    stimuli: torch.Tensor,
                    categories: torch.Tensor):
            """Initialize perception task."""
            self.stimuli = stimuli
            self.categories = categories
    
        def evaluate(self, agent: ActiveInferenceAgent) -> Dict[str, float]:
            """Evaluate agent performance."""
            predictions = []
            for stimulus in self.stimuli:
                belief = agent.infer_states(stimulus)
                pred = agent.model.predict_category(belief)
                predictions.append(pred)
            return compute_metrics(predictions, self.categories)
    
  • Decision Making
  • Motor Control
  • Learning Tasks

Week 3-4: Real-world Applications

  • Robotics
  • Neural Data Analysis
  • Clinical Applications
  • Social Systems

4. Advanced Topics (4 weeks)

Week 1-2: Theoretical Extensions

  • Non-equilibrium Physics
  • Information Geometry
  • Quantum Extensions
  • Continuous Time

Week 3-4: Research Frontiers

  • Mixed Models
  • Group Behavior
  • Development
  • Consciousness

Projects

Beginner Projects

  1. Simple Perception

    • Binary classification
    • Feature extraction
    • Belief updating
    • Performance analysis
  2. Basic Control

    • Pendulum balance
    • Target reaching
    • Simple navigation
    • Error correction

Intermediate Projects

  1. Cognitive Tasks

    • Visual recognition
    • Decision making
    • Sequence learning
    • Working memory
  2. Robotic Control

    • Arm control
    • Object manipulation
    • Path planning
    • Multi-joint coordination

Advanced Projects

  1. Complex Cognition

    • Meta-learning
    • Hierarchical control
    • Active exploration
    • Social interaction
  2. Real-world Applications

    • Medical diagnosis
    • Brain-machine interfaces
    • Autonomous systems
    • Clinical interventions

Resources

Reading Materials

  1. Core Papers

    • Original formulations
    • Key extensions
    • Review papers
    • Applications
  2. Books

    • Mathematical foundations
    • Cognitive science
    • Machine learning
    • Neuroscience

Software Tools

  1. Libraries

    • PyAI (Active Inference)
    • Torch/JAX implementations
    • Simulation environments
    • Analysis tools
  2. Environments

    • OpenAI Gym
    • MuJoCo
    • Custom environments
    • Real-world interfaces

Assessment

Knowledge Checks

  1. Theoretical Understanding

    • Mathematical derivations
    • Conceptual relationships
    • Framework applications
    • Design principles
  2. Implementation Skills

    • Code review
    • Performance analysis
    • Debugging exercises
    • Optimization tasks

Final Projects

  1. Research Implementation

    • Novel contribution
    • Theoretical extension
    • Empirical validation
    • Documentation
  2. Practical Application

    • Real-world problem
    • Solution design
    • Performance evaluation
    • Impact assessment

Next Steps

Advanced Paths

  1. predictive_processing_learning_path
  2. cognitive_architecture_learning_path
  3. free_energy_principle_learning_path

Research Directions

  1. research_guides/active_inference
  2. research_guides/cognitive_science
  3. research_guides/machine_learning