зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-30 20:56:04 +02:00
7.7 KiB
7.7 KiB
| title | type | status | created | complexity | processing_priority | tags | semantic_relations | ||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Active Inference Learning Path | learning_path | stable | 2024-03-15 | advanced | 1 |
|
|
Active Inference Learning Path
Overview
This learning path provides a comprehensive guide to understanding and implementing Active Inference, from mathematical foundations to practical applications. Active Inference is a unifying framework for understanding perception, learning, and action in biological and artificial systems.
Prerequisites
1. Mathematics (4 weeks)
-
probability_theory_learning_path
- Probability spaces
- Random variables
- Conditional probability
- Bayesian inference
-
information_theory_learning_path
- Entropy
- KL divergence
- Mutual information
- Free energy
-
optimization_theory_learning_path
- Variational methods
- Gradient descent
- Lagrange multipliers
- Optimal control
-
stochastic_processes_learning_path
- Markov processes
- Diffusion processes
- Stochastic differential equations
- Path integrals
2. Programming (2 weeks)
-
Python Fundamentals
- NumPy/SciPy
- PyTorch/JAX
- Object-oriented programming
- Scientific computing
-
Software Engineering
- Version control
- Testing
- Documentation
- Best practices
Core Learning Path
1. Theoretical Foundations (4 weeks)
Week 1-2: Free Energy Principle
- Variational Free Energy
def compute_free_energy(q_dist, p_dist, obs): """Compute variational free energy.""" expected_log_likelihood = compute_expected_ll(q_dist, p_dist, obs) kl_divergence = compute_kl(q_dist, p_dist) return -expected_log_likelihood + kl_divergence - Markov Blankets
- Self-organization
- Information Geometry
Week 3-4: Active Inference
- Expected Free Energy
def compute_expected_free_energy(policy, model): """Compute expected free energy for policy.""" ambiguity = compute_ambiguity(policy, model) risk = compute_risk(policy, model) return ambiguity + risk - Policy Selection
- Precision Engineering
- Message Passing
2. Implementation (6 weeks)
Week 1-2: Core Components
- Generative Models
class GenerativeModel: def __init__(self, hidden_dims: List[int], obs_dim: int): """Initialize generative model.""" self.hidden_states = [ torch.zeros(dim) for dim in hidden_dims ] self.obs_model = ObservationModel(hidden_dims[-1], obs_dim) self.trans_model = TransitionModel(hidden_dims) def generate(self, policy: torch.Tensor) -> torch.Tensor: """Generate observations under policy.""" states = self.propagate_states(policy) return self.obs_model(states) - Variational Inference
- Policy Networks
- Precision Parameters
Week 3-4: Agent Implementation
- Perception
class ActiveInferenceAgent: def __init__(self, model: GenerativeModel, learning_rate: float = 0.01): """Initialize active inference agent.""" self.model = model self.lr = learning_rate self.beliefs = initialize_beliefs() def infer_states(self, obs: torch.Tensor) -> torch.Tensor: """Perform state inference.""" for _ in range(self.inference_steps): pred_error = self.compute_prediction_error(obs) self.update_beliefs(pred_error) return self.beliefs - Action Selection
- Learning
- Memory
Week 5-6: Advanced Features
- Hierarchical Models
- Active Learning
- Meta-learning
- Adaptive Behavior
3. Applications (4 weeks)
Week 1-2: Cognitive Tasks
- Perception Tasks
class PerceptionTask: def __init__(self, stimuli: torch.Tensor, categories: torch.Tensor): """Initialize perception task.""" self.stimuli = stimuli self.categories = categories def evaluate(self, agent: ActiveInferenceAgent) -> Dict[str, float]: """Evaluate agent performance.""" predictions = [] for stimulus in self.stimuli: belief = agent.infer_states(stimulus) pred = agent.model.predict_category(belief) predictions.append(pred) return compute_metrics(predictions, self.categories) - Decision Making
- Motor Control
- Learning Tasks
Week 3-4: Real-world Applications
- Robotics
- Neural Data Analysis
- Clinical Applications
- Social Systems
4. Advanced Topics (4 weeks)
Week 1-2: Theoretical Extensions
- Non-equilibrium Physics
- Information Geometry
- Quantum Extensions
- Continuous Time
Week 3-4: Research Frontiers
- Mixed Models
- Group Behavior
- Development
- Consciousness
Projects
Beginner Projects
-
Simple Perception
- Binary classification
- Feature extraction
- Belief updating
- Performance analysis
-
Basic Control
- Pendulum balance
- Target reaching
- Simple navigation
- Error correction
Intermediate Projects
-
Cognitive Tasks
- Visual recognition
- Decision making
- Sequence learning
- Working memory
-
Robotic Control
- Arm control
- Object manipulation
- Path planning
- Multi-joint coordination
Advanced Projects
-
Complex Cognition
- Meta-learning
- Hierarchical control
- Active exploration
- Social interaction
-
Real-world Applications
- Medical diagnosis
- Brain-machine interfaces
- Autonomous systems
- Clinical interventions
Resources
Reading Materials
-
Core Papers
- Original formulations
- Key extensions
- Review papers
- Applications
-
Books
- Mathematical foundations
- Cognitive science
- Machine learning
- Neuroscience
Software Tools
-
Libraries
- PyAI (Active Inference)
- Torch/JAX implementations
- Simulation environments
- Analysis tools
-
Environments
- OpenAI Gym
- MuJoCo
- Custom environments
- Real-world interfaces
Assessment
Knowledge Checks
-
Theoretical Understanding
- Mathematical derivations
- Conceptual relationships
- Framework applications
- Design principles
-
Implementation Skills
- Code review
- Performance analysis
- Debugging exercises
- Optimization tasks
Final Projects
-
Research Implementation
- Novel contribution
- Theoretical extension
- Empirical validation
- Documentation
-
Practical Application
- Real-world problem
- Solution design
- Performance evaluation
- Impact assessment
Next Steps
Advanced Paths
- predictive_processing_learning_path
- cognitive_architecture_learning_path
- free_energy_principle_learning_path