зеркало из
				https://github.com/docxology/cognitive.git
				synced 2025-10-31 21:26:04 +02:00 
			
		
		
		
	
		
			
				
	
	
		
			339 строки
		
	
	
		
			11 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			339 строки
		
	
	
		
			11 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| # Model Implementation Guide
 | |
| 
 | |
| ---
 | |
| title: Model Implementation Guide
 | |
| type: guide
 | |
| status: stable
 | |
| created: 2024-02-06
 | |
| tags:
 | |
|   - implementation
 | |
|   - models
 | |
|   - development
 | |
|   - architecture
 | |
| semantic_relations:
 | |
|   - type: implements
 | |
|     links: 
 | |
|       - [[knowledge_base/cognitive/active_inference|Active Inference]]
 | |
|       - [[knowledge_base/cognitive/free_energy_principle|Free Energy Principle]]
 | |
|   - type: relates
 | |
|     links:
 | |
|       - [[docs/guides/implementation_patterns|Implementation Patterns]]
 | |
|       - [[docs/api/api_reference|API Reference]]
 | |
| ---
 | |
| 
 | |
| ## Overview
 | |
| 
 | |
| This guide provides detailed instructions for implementing cognitive models based on the Active Inference framework. While the [[knowledge_base/cognitive/cognitive_science|knowledge base]] provides theoretical foundations, this guide focuses on practical implementation steps.
 | |
| 
 | |
| ## Model Architecture
 | |
| 
 | |
| ### Core Components
 | |
| ```python
 | |
| # @model_architecture
 | |
| class CognitiveModel:
 | |
|     """
 | |
|     Core cognitive model implementation.
 | |
|     
 | |
|     Theory: [[knowledge_base/cognitive/cognitive_phenomena#model-architecture|Model Architecture]]
 | |
|     Patterns: [[docs/guides/implementation_patterns#core-implementation-patterns|Implementation Patterns]]
 | |
|     """
 | |
|     def __init__(self):
 | |
|         # Initialize core components
 | |
|         self.belief_model = BeliefModel()      # [[belief_updating]]
 | |
|         self.policy_model = PolicyModel()      # [[action_selection]]
 | |
|         self.perception_model = PerceptionModel()  # [[perception_system]]
 | |
|         
 | |
|         # Initialize state
 | |
|         self.initialize_state()
 | |
| ```
 | |
| 
 | |
| ### State Management
 | |
| ```python
 | |
| # @state_management
 | |
| def initialize_state(self):
 | |
|     """
 | |
|     Initialize model state.
 | |
|     
 | |
|     Theory: [[knowledge_base/cognitive/predictive_processing#state-initialization|State Initialization]]
 | |
|     Implementation: [[docs/guides/implementation_patterns#state-management|State Management]]
 | |
|     """
 | |
|     # Initialize belief states
 | |
|     self.beliefs = self._initialize_beliefs()
 | |
|     
 | |
|     # Initialize action states
 | |
|     self.policies = self._initialize_policies()
 | |
|     
 | |
|     # Initialize perception states
 | |
|     self.perception = self._initialize_perception()
 | |
| ```
 | |
| 
 | |
| ## Implementation Steps
 | |
| 
 | |
| ### 1. Belief System Implementation
 | |
| ```python
 | |
| # @belief_implementation
 | |
| class BeliefModel:
 | |
|     """
 | |
|     Belief system implementation.
 | |
|     
 | |
|     Theory:
 | |
|         - [[knowledge_base/cognitive/predictive_processing#belief-system|Belief System]]
 | |
|         - [[knowledge_base/cognitive/free_energy_principle#belief-dynamics|Belief Dynamics]]
 | |
|     Mathematics:
 | |
|         - [[knowledge_base/mathematics/bayesian_inference|Bayesian Inference]]
 | |
|         - [[knowledge_base/mathematics/variational_methods|Variational Methods]]
 | |
|     API: [[docs/api/api_reference#belief-updating-system|Belief Updating API]]
 | |
|     """
 | |
|     def update_beliefs(self, observation: Observation) -> BeliefState:
 | |
|         """
 | |
|         Update beliefs based on observation.
 | |
|         
 | |
|         Theory:
 | |
|             - [[knowledge_base/cognitive/free_energy_principle#belief-updating|Belief Updating]]
 | |
|             - [[knowledge_base/cognitive/predictive_processing#prediction-error|Prediction Error]]
 | |
|         Mathematics:
 | |
|             - [[knowledge_base/mathematics/message_passing|Message Passing]]
 | |
|             - [[knowledge_base/mathematics/gradient_descent|Gradient Descent]]
 | |
|         Implementation:
 | |
|             - [[docs/api/matrix_operations#belief-update|Belief Update Operations]]
 | |
|             - [[docs/api/optimization_methods#belief-optimization|Belief Optimization]]
 | |
|         """
 | |
|         # Compute prediction error using precision-weighted differences
 | |
|         prediction_error = self._compute_prediction_error(
 | |
|             observation,
 | |
|             method="precision_weighted"  # [[knowledge_base/mathematics/precision_weighting]]
 | |
|         )
 | |
|         
 | |
|         # Update beliefs using gradient descent on free energy
 | |
|         updated_beliefs = self._minimize_free_energy(
 | |
|             prediction_error,
 | |
|             optimizer="natural_gradient"  # [[knowledge_base/mathematics/natural_gradients]]
 | |
|         )
 | |
|         
 | |
|         return updated_beliefs
 | |
| ```
 | |
| 
 | |
| ### 2. Policy Implementation
 | |
| ```python
 | |
| # @policy_implementation
 | |
| class PolicyModel:
 | |
|     """
 | |
|     Policy selection implementation.
 | |
|     
 | |
|     Theory:
 | |
|         - [[knowledge_base/cognitive/active_inference#policy-selection|Policy Selection]]
 | |
|         - [[knowledge_base/cognitive/free_energy_principle#action-selection|Action Selection]]
 | |
|     Mathematics:
 | |
|         - [[knowledge_base/mathematics/expected_free_energy|Expected Free Energy]]
 | |
|         - [[knowledge_base/mathematics/information_theory|Information Theory]]
 | |
|     API: [[docs/api/api_reference#policy-selection|Policy Selection API]]
 | |
|     """
 | |
|     def select_policy(self, beliefs: BeliefState) -> Policy:
 | |
|         """
 | |
|         Select optimal policy.
 | |
|         
 | |
|         Theory:
 | |
|             - [[knowledge_base/cognitive/free_energy_principle#expected-free-energy|Expected Free Energy]]
 | |
|             - [[knowledge_base/cognitive/active_inference#policy-optimization|Policy Optimization]]
 | |
|         Mathematics:
 | |
|             - [[knowledge_base/mathematics/path_integral|Path Integral Control]]
 | |
|             - [[knowledge_base/mathematics/softmax|Softmax Selection]]
 | |
|         Implementation:
 | |
|             - [[docs/api/optimization_methods#policy-selection|Policy Selection]]
 | |
|             - [[docs/api/probability_utils#softmax|Softmax Implementation]]
 | |
|         """
 | |
|         # Generate policies using path integral sampling
 | |
|         policies = self._generate_policies(
 | |
|             method="path_integral"  # [[knowledge_base/mathematics/path_sampling]]
 | |
|         )
 | |
|         
 | |
|         # Evaluate expected free energy
 | |
|         policy_values = self._evaluate_policies(
 | |
|             policies,
 | |
|             method="expected_free_energy"  # [[knowledge_base/mathematics/expected_free_energy]]
 | |
|         )
 | |
|         
 | |
|         # Select using precision-weighted softmax
 | |
|         optimal_policy = self._select_optimal_policy(
 | |
|             policy_values,
 | |
|             method="precision_softmax"  # [[knowledge_base/mathematics/precision_weighted_selection]]
 | |
|         )
 | |
|         
 | |
|         return optimal_policy
 | |
| ```
 | |
| 
 | |
| ### 3. Perception Implementation
 | |
| ```python
 | |
| # @perception_implementation
 | |
| class PerceptionModel:
 | |
|     """
 | |
|     Perception system implementation.
 | |
|     
 | |
|     Theory:
 | |
|         - [[knowledge_base/cognitive/predictive_processing#perception|Perception]]
 | |
|         - [[knowledge_base/cognitive/free_energy_principle#perceptual-inference|Perceptual Inference]]
 | |
|     Mathematics:
 | |
|         - [[knowledge_base/mathematics/hierarchical_inference|Hierarchical Inference]]
 | |
|         - [[knowledge_base/mathematics/message_passing|Message Passing]]
 | |
|     API: [[docs/api/api_reference#perception-system|Perception API]]
 | |
|     """
 | |
|     def process_observation(self, sensory_input: Input) -> Observation:
 | |
|         """
 | |
|         Process sensory input.
 | |
|         
 | |
|         Theory:
 | |
|             - [[knowledge_base/cognitive/predictive_processing#sensory-processing|Sensory Processing]]
 | |
|             - [[knowledge_base/cognitive/active_inference#perception|Active Inference Perception]]
 | |
|         Mathematics:
 | |
|             - [[knowledge_base/mathematics/error_propagation|Error Propagation]]
 | |
|             - [[knowledge_base/mathematics/precision_weighting|Precision Weighting]]
 | |
|         Implementation:
 | |
|             - [[docs/api/matrix_operations#error-computation|Error Computation]]
 | |
|             - [[docs/api/probability_utils#precision-scaling|Precision Scaling]]
 | |
|         """
 | |
|         # Preprocess input using hierarchical processing
 | |
|         processed_input = self._preprocess_input(
 | |
|             sensory_input,
 | |
|             method="hierarchical"  # [[knowledge_base/mathematics/hierarchical_processing]]
 | |
|         )
 | |
|         
 | |
|         # Generate predictions using generative model
 | |
|         predictions = self._generate_predictions(
 | |
|             method="top_down"  # [[knowledge_base/cognitive/predictive_processing#top-down-predictions]]
 | |
|         )
 | |
|         
 | |
|         # Compare with predictions using precision-weighted errors
 | |
|         observation = self._compare_with_predictions(
 | |
|             processed_input,
 | |
|             predictions,
 | |
|             method="precision_weighted"  # [[knowledge_base/mathematics/precision_weighting]]
 | |
|         )
 | |
|         
 | |
|         return observation
 | |
| ```
 | |
| 
 | |
| ## Integration Guidelines
 | |
| 
 | |
| ### 1. Component Integration
 | |
| ```python
 | |
| # @component_integration
 | |
| def integrate_components(self):
 | |
|     """
 | |
|     Integrate model components.
 | |
|     
 | |
|     See [[docs/guides/system_integration|System Integration]]
 | |
|     """
 | |
|     # Connect belief system
 | |
|     self._connect_belief_system()
 | |
|     
 | |
|     # Connect policy system
 | |
|     self._connect_policy_system()
 | |
|     
 | |
|     # Connect perception system
 | |
|     self._connect_perception_system()
 | |
| ```
 | |
| 
 | |
| ### 2. Data Flow
 | |
| ```python
 | |
| # @data_flow
 | |
| def process_cycle(self, input_data: Input) -> Action:
 | |
|     """
 | |
|     Process single cognitive cycle.
 | |
|     
 | |
|     Theory: [[knowledge_base/cognitive/active_inference#cognitive-cycle|Cognitive Cycle]]
 | |
|     """
 | |
|     # Process perception
 | |
|     observation = self.perception_model.process_observation(input_data)
 | |
|     
 | |
|     # Update beliefs
 | |
|     beliefs = self.belief_model.update_beliefs(observation)
 | |
|     
 | |
|     # Select policy
 | |
|     policy = self.policy_model.select_policy(beliefs)
 | |
|     
 | |
|     # Get action
 | |
|     action = policy.get_action()
 | |
|     
 | |
|     return action
 | |
| ```
 | |
| 
 | |
| ## Validation Framework
 | |
| 
 | |
| ### 1. Model Validation
 | |
| ```python
 | |
| # @model_validation
 | |
| def validate_model(self) -> ValidationResult:
 | |
|     """
 | |
|     Validate model implementation.
 | |
|     
 | |
|     See [[docs/guides/validation_guide|Validation Guide]]
 | |
|     """
 | |
|     # Validate components
 | |
|     component_validation = self._validate_components()
 | |
|     
 | |
|     # Validate integration
 | |
|     integration_validation = self._validate_integration()
 | |
|     
 | |
|     # Validate behavior
 | |
|     behavior_validation = self._validate_behavior()
 | |
|     
 | |
|     return ValidationResult(
 | |
|         component_validation,
 | |
|         integration_validation,
 | |
|         behavior_validation
 | |
|     )
 | |
| ```
 | |
| 
 | |
| ### 2. Testing Framework
 | |
| ```python
 | |
| # @testing_framework
 | |
| def test_model(self) -> TestResults:
 | |
|     """
 | |
|     Test model implementation.
 | |
|     
 | |
|     See [[docs/guides/testing_guide|Testing Guide]]
 | |
|     """
 | |
|     # Run unit tests
 | |
|     unit_results = self._run_unit_tests()
 | |
|     
 | |
|     # Run integration tests
 | |
|     integration_results = self._run_integration_tests()
 | |
|     
 | |
|     # Run system tests
 | |
|     system_results = self._run_system_tests()
 | |
|     
 | |
|     return TestResults(
 | |
|         unit_results,
 | |
|         integration_results,
 | |
|         system_results
 | |
|     )
 | |
| ```
 | |
| 
 | |
| ## Best Practices
 | |
| 
 | |
| ### 1. Implementation Guidelines
 | |
| - Follow [[docs/guides/implementation_patterns|Implementation Patterns]]
 | |
| - Use [[docs/guides/code_organization|Code Organization]]
 | |
| - Apply [[docs/guides/documentation_standards|Documentation Standards]]
 | |
| 
 | |
| ### 2. Performance Optimization
 | |
| - Implement [[docs/guides/performance_optimization|Optimization Guidelines]]
 | |
| - Monitor [[docs/guides/performance_metrics|Performance Metrics]]
 | |
| - Profile using [[docs/guides/profiling_guide|Profiling Guide]]
 | |
| 
 | |
| ### 3. Quality Assurance
 | |
| - Follow [[docs/guides/testing_guide|Testing Guidelines]]
 | |
| - Use [[docs/guides/validation_framework|Validation Framework]]
 | |
| - Review with [[docs/guides/code_review|Code Review Process]]
 | |
| 
 | |
| ## Related Documentation
 | |
| - [[knowledge_base/cognitive/cognitive_science|Cognitive Science Theory]]
 | |
| - [[docs/api/api_reference|API Reference]]
 | |
| - [[docs/guides/implementation_patterns|Implementation Patterns]]
 | |
| - [[docs/guides/system_integration|System Integration]]
 | |
| 
 | |
| ## References
 | |
| - [[knowledge_base/cognitive/active_inference|Active Inference]]
 | |
| - [[knowledge_base/cognitive/free_energy_principle|Free Energy Principle]]
 | |
| - [[knowledge_base/cognitive/predictive_processing|Predictive Processing]]
 | |
| - [[docs/concepts/theoretical_foundations|Theoretical Foundations]]  | 
