зеркало из
				https://github.com/docxology/cognitive.git
				synced 2025-10-30 20:56:04 +02:00 
			
		
		
		
	
		
			
				
	
	
	
		
			5.4 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	
			5.4 KiB
		
	
	
	
	
	
	
	
Documentation Linking Analysis
title: Documentation Linking Analysis type: guide status: stable created: 2024-02-06 tags:
- linking
- validation
- analysis
- documentation semantic_relations:
- type: implements links: obsidian_linking
- type: extends links: ai_validation_framework
Overview
This guide analyzes the current linking patterns and provides validation frameworks for maintaining high-quality documentation relationships.
Link Pattern Analysis
Core Link Types
link_types:
  hierarchical:
    - parent_child:     # Concept hierarchies
        pattern: "[[parent]] -> [[child]]"
        validation: "bidirectional"
    - implementation:   # Concept to implementation
        pattern: "[[concept]] -> [[implementation]]"
        validation: "traceable"
    - documentation:    # Documentation relationships
        pattern: "[[guide]] -> [[reference]]"
        validation: "consistent"
  
  semantic:
    - prerequisite:     # Required knowledge
        pattern: "[[prereq]] -> [[concept]]"
        confidence: 0.8
    - related:         # Related concepts
        pattern: "[[concept_a]] <-> [[concept_b]]"
        similarity: 0.7
    - extends:         # Extension relationships
        pattern: "[[base]] -> [[extension]]"
        validation: "complete"
Link Categories
Knowledge Organization
# @knowledge_links
knowledge_structure = {
    "concepts": {
        "required": ["parent", "children", "implementations"],
        "optional": ["related", "examples", "references"]
    },
    "implementations": {
        "required": ["concept", "tests", "documentation"],
        "optional": ["examples", "extensions", "optimizations"]
    },
    "documentation": {
        "required": ["overview", "details", "references"],
        "optional": ["examples", "tutorials", "guides"]
    }
}
Research Integration
# @research_links
research_structure = {
    "papers": {
        "required": ["methodology", "results", "references"],
        "optional": ["data", "code", "supplements"]
    },
    "experiments": {
        "required": ["protocol", "data", "analysis"],
        "optional": ["code", "results", "visualizations"]
    },
    "results": {
        "required": ["data", "analysis", "conclusions"],
        "optional": ["visualizations", "interpretations", "implications"]
    }
}
Validation Framework
Link Validation Rules
# @link_validation
def validate_links(document):
    """
    Validate document links
    
    Validation steps:
    1. Check required links
    2. Verify bidirectional links
    3. Validate link types
    4. Check link consistency
    """
    required = check_required_links(document)
    bidirectional = verify_bidirectional(document)
    types = validate_link_types(document)
    consistency = check_consistency(document)
    
    return {
        "required_complete": required,
        "bidirectional_valid": bidirectional,
        "types_valid": types,
        "consistency_score": consistency
    }
Quality Metrics
# @quality_metrics
link_quality = {
    "completeness": {
        "required_links": 0.95,    # Required link coverage
        "optional_links": 0.75,    # Optional link coverage
        "bidirectional": 0.90      # Bidirectional link completion
    },
    "consistency": {
        "naming": 0.95,           # Consistent naming
        "structure": 0.90,        # Structural consistency
        "hierarchy": 0.85         # Hierarchical consistency
    },
    "validity": {
        "broken_links": 0.0,      # No broken links
        "circular_refs": 0.0,     # No circular references
        "orphaned_docs": 0.0      # No orphaned documents
    }
}
Link Patterns
Documentation Flow
graph TD
    A[Concepts] --> B[Implementations]
    B --> C[Documentation]
    C --> D[Examples]
    D --> E[Tests]
    
    F[Research] --> G[Papers]
    G --> H[Results]
    H --> I[Knowledge Base]
Knowledge Graph
graph LR
    A[Core Concepts] --> B[Extensions]
    B --> C[Implementations]
    C --> D[Applications]
    
    E[Research] --> F[Experiments]
    F --> G[Results]
    G --> H[Integration]
Improvement Framework
Link Enhancement
# @link_enhancement
def enhance_links(document):
    """
    Enhance document links
    
    Enhancement steps:
    1. Add missing required links
    2. Complete bidirectional links
    3. Add semantic annotations
    4. Update link metadata
    """
    pass
Quality Monitoring
# @quality_monitoring
def monitor_quality():
    """
    Monitor link quality
    
    Monitoring steps:
    1. Track quality metrics
    2. Identify issues
    3. Generate reports
    4. Suggest improvements
    """
    pass
Best Practices
1. Link Organization
- Group related links logically
- Maintain consistent structure
- Use appropriate annotations
- Include validation blocks
2. Link Maintenance
- Regular link validation
- Update bidirectional links
- Remove obsolete links
- Add new relationships
3. Link Quality
- Clear relationship types
- Appropriate context
- Meaningful descriptions
- Proper categorization
