зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-29 20:26:04 +02:00
132 строки
5.0 KiB
Markdown
132 строки
5.0 KiB
Markdown
# Cognitive Ecosystem Modeling Framework
|
|
|
|
A comprehensive framework for modeling cognitive ecosystems using [[active_inference|Active Inference]], integrated with [[docs/guides/obsidian_linking|Obsidian]] for knowledge management.
|
|
|
|
## Overview
|
|
|
|
This project combines cognitive modeling with knowledge management to create a powerful framework for:
|
|
- Modeling agent behaviors using [[active_inference|Active Inference]]
|
|
- Managing complex [[knowledge_organization|knowledge structures]]
|
|
- Visualizing and analyzing [[knowledge_base/cognitive/cognitive_phenomena|cognitive networks]]
|
|
- Simulating multi-agent interactions
|
|
|
|
## Project Structure
|
|
|
|
See [[ai_folder_structure]] for comprehensive directory organization.
|
|
|
|
📁 docs/ # Documentation (See [[docs/guides/documentation_standards|Documentation Standards]])
|
|
📁 tests/ # Test suite (See [[docs/guides/unit_testing|Unit Testing Guide]])
|
|
📁 data/ # Data storage
|
|
|
|
## Features
|
|
|
|
### Knowledge Management
|
|
- [[docs/guides/obsidian_linking|Obsidian-compatible markdown files]]
|
|
- [[docs/guides/linking_completeness|Bidirectional linking]]
|
|
- [[docs/templates/ai_concept_template|Template-based node creation]]
|
|
- [[docs/guides/ai_validation_framework|Automated relationship tracking]]
|
|
|
|
### Cognitive Modeling
|
|
- [[knowledge_base/cognitive/active_inference|Active Inference implementation]]
|
|
- [[knowledge_base/mathematics/belief_updating|Belief updating mechanisms]]
|
|
- [[knowledge_base/cognitive/action_selection|Policy selection algorithms]]
|
|
- [[knowledge_base/cognitive/predictive_processing|State estimation tools]]
|
|
|
|
### Analysis & Visualization
|
|
- [[docs/tools/network_analysis|Network analysis]]
|
|
- [[docs/concepts/quality_metrics|Performance metrics]]
|
|
- [[docs/tools/visualization|Interactive visualizations]]
|
|
- [[docs/guides/simulation|Simulation frameworks]]
|
|
|
|
## Knowledge Integration Architecture
|
|
|
|
### Bidirectional Knowledge Graph
|
|
The framework leverages [[docs/guides/obsidian_linking|Obsidian's linking capabilities]] to create a living knowledge graph that:
|
|
- Enforces [[docs/guides/validation|mathematical and theoretical consistency]]
|
|
- Enables [[docs/guides/ai_validation_framework|automated validation]] of relationships
|
|
- Supports [[docs/guides/machine_learning|dynamic discovery]] of dependencies
|
|
- Facilitates [[docs/guides/research|learning through exploration]]
|
|
|
|
#### Link Types and Semantics
|
|
See [[docs/guides/linking_completeness]] for comprehensive linking patterns.
|
|
|
|
1. Theoretical Dependencies
|
|
```markdown
|
|
[[knowledge_base/mathematics/measure_theory]] → [[knowledge_base/mathematics/probability_theory]] → [[knowledge_base/cognitive/stochastic_processes]]
|
|
```
|
|
- Enforces prerequisite knowledge
|
|
- Validates theoretical foundations
|
|
- Ensures consistent notation
|
|
|
|
2. Implementation Dependencies
|
|
```markdown
|
|
[[knowledge_base/cognitive/active_inference]] → [[knowledge_base/mathematics/belief_updating]] → [[knowledge_base/cognitive/action_selection]]
|
|
```
|
|
- Tracks computational requirements
|
|
- Maintains implementation consistency
|
|
- Documents design decisions
|
|
|
|
3. Validation Links
|
|
```markdown
|
|
[[docs/guides/unit_testing]] → [[docs/guides/validation]] → [[docs/concepts/quality_metrics]]
|
|
```
|
|
- Ensures rigorous testing
|
|
- Maintains quality standards
|
|
- Documents validation procedures
|
|
|
|
### Meta-Programming Capabilities
|
|
|
|
#### Code Generation
|
|
```python
|
|
def generate_model_code(spec_file: Path) -> str:
|
|
"""Generate implementation from specifications.
|
|
See [[docs/guides/ai_documentation_style]] for code generation patterns.
|
|
"""
|
|
# Parse markdown specifications
|
|
spec = parse_markdown_spec(spec_file)
|
|
|
|
# Extract probabilistic model
|
|
model = extract_probabilistic_model(spec)
|
|
|
|
# Generate implementation
|
|
return generate_implementation(model)
|
|
```
|
|
|
|
#### Validation Rules
|
|
```python
|
|
def check_probabilistic_consistency():
|
|
"""Verify probabilistic consistency.
|
|
See [[docs/guides/validation]] for validation rules.
|
|
"""
|
|
# Check matrix constraints
|
|
verify_stochastic_matrices()
|
|
|
|
# Validate probability measures
|
|
verify_measure_consistency()
|
|
|
|
# Check inference specifications
|
|
verify_inference_methods()
|
|
```
|
|
|
|
### Benefits
|
|
|
|
1. **Theoretical Consistency**
|
|
- [[docs/guides/ai_validation_framework|Automated validation]] of mathematical relationships
|
|
- Enforcement of probabilistic constraints
|
|
- Verification of implementation patterns
|
|
|
|
2. **Learning Support**
|
|
- [[docs/guides/research|Guided exploration]] of concepts
|
|
- Clear dependency tracking
|
|
- Interactive knowledge discovery
|
|
|
|
3. **Implementation Quality**
|
|
- [[docs/guides/ai_documentation_style|Automated code generation]]
|
|
- Consistent design patterns
|
|
- [[docs/guides/unit_testing|Rigorous testing framework]]
|
|
|
|
4. **Documentation Integration**
|
|
- [[docs/guides/documentation_standards|Living documentation]]
|
|
- [[docs/guides/package_documentation|Executable specifications]]
|
|
- [[docs/guides/ai_validation_framework|Automated validation]]
|