cognitive/README.md
Daniel Ari Friedman 59a4bfb111 Updates
2025-02-12 10:51:38 -08:00

132 строки
5.0 KiB
Markdown

# Cognitive Ecosystem Modeling Framework
A comprehensive framework for modeling cognitive ecosystems using [[active_inference|Active Inference]], integrated with [[docs/guides/obsidian_linking|Obsidian]] for knowledge management.
## Overview
This project combines cognitive modeling with knowledge management to create a powerful framework for:
- Modeling agent behaviors using [[active_inference|Active Inference]]
- Managing complex [[knowledge_organization|knowledge structures]]
- Visualizing and analyzing [[knowledge_base/cognitive/cognitive_phenomena|cognitive networks]]
- Simulating multi-agent interactions
## Project Structure
See [[ai_folder_structure]] for comprehensive directory organization.
📁 docs/ # Documentation (See [[docs/guides/documentation_standards|Documentation Standards]])
📁 tests/ # Test suite (See [[docs/guides/unit_testing|Unit Testing Guide]])
📁 data/ # Data storage
## Features
### Knowledge Management
- [[docs/guides/obsidian_linking|Obsidian-compatible markdown files]]
- [[docs/guides/linking_completeness|Bidirectional linking]]
- [[docs/templates/ai_concept_template|Template-based node creation]]
- [[docs/guides/ai_validation_framework|Automated relationship tracking]]
### Cognitive Modeling
- [[knowledge_base/cognitive/active_inference|Active Inference implementation]]
- [[knowledge_base/mathematics/belief_updating|Belief updating mechanisms]]
- [[knowledge_base/cognitive/action_selection|Policy selection algorithms]]
- [[knowledge_base/cognitive/predictive_processing|State estimation tools]]
### Analysis & Visualization
- [[docs/tools/network_analysis|Network analysis]]
- [[docs/concepts/quality_metrics|Performance metrics]]
- [[docs/tools/visualization|Interactive visualizations]]
- [[docs/guides/simulation|Simulation frameworks]]
## Knowledge Integration Architecture
### Bidirectional Knowledge Graph
The framework leverages [[docs/guides/obsidian_linking|Obsidian's linking capabilities]] to create a living knowledge graph that:
- Enforces [[docs/guides/validation|mathematical and theoretical consistency]]
- Enables [[docs/guides/ai_validation_framework|automated validation]] of relationships
- Supports [[docs/guides/machine_learning|dynamic discovery]] of dependencies
- Facilitates [[docs/guides/research|learning through exploration]]
#### Link Types and Semantics
See [[docs/guides/linking_completeness]] for comprehensive linking patterns.
1. Theoretical Dependencies
```markdown
[[knowledge_base/mathematics/measure_theory]] → [[knowledge_base/mathematics/probability_theory]] → [[knowledge_base/cognitive/stochastic_processes]]
```
- Enforces prerequisite knowledge
- Validates theoretical foundations
- Ensures consistent notation
2. Implementation Dependencies
```markdown
[[knowledge_base/cognitive/active_inference]] → [[knowledge_base/mathematics/belief_updating]] → [[knowledge_base/cognitive/action_selection]]
```
- Tracks computational requirements
- Maintains implementation consistency
- Documents design decisions
3. Validation Links
```markdown
[[docs/guides/unit_testing]] → [[docs/guides/validation]] → [[docs/concepts/quality_metrics]]
```
- Ensures rigorous testing
- Maintains quality standards
- Documents validation procedures
### Meta-Programming Capabilities
#### Code Generation
```python
def generate_model_code(spec_file: Path) -> str:
"""Generate implementation from specifications.
See [[docs/guides/ai_documentation_style]] for code generation patterns.
"""
# Parse markdown specifications
spec = parse_markdown_spec(spec_file)
# Extract probabilistic model
model = extract_probabilistic_model(spec)
# Generate implementation
return generate_implementation(model)
```
#### Validation Rules
```python
def check_probabilistic_consistency():
"""Verify probabilistic consistency.
See [[docs/guides/validation]] for validation rules.
"""
# Check matrix constraints
verify_stochastic_matrices()
# Validate probability measures
verify_measure_consistency()
# Check inference specifications
verify_inference_methods()
```
### Benefits
1. **Theoretical Consistency**
- [[docs/guides/ai_validation_framework|Automated validation]] of mathematical relationships
- Enforcement of probabilistic constraints
- Verification of implementation patterns
2. **Learning Support**
- [[docs/guides/research|Guided exploration]] of concepts
- Clear dependency tracking
- Interactive knowledge discovery
3. **Implementation Quality**
- [[docs/guides/ai_documentation_style|Automated code generation]]
- Consistent design patterns
- [[docs/guides/unit_testing|Rigorous testing framework]]
4. **Documentation Integration**
- [[docs/guides/documentation_standards|Living documentation]]
- [[docs/guides/package_documentation|Executable specifications]]
- [[docs/guides/ai_validation_framework|Automated validation]]