зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-29 12:16:04 +02:00
5.5 KiB
5.5 KiB
AI Documentation Style Guide
title: AI Documentation Style Guide type: guide status: stable created: 2024-02-06 tags:
- style
- ai
- documentation
- machine-readable related:
- machine_readability
- knowledge_organization
- documentation_standards
Overview
This guide establishes documentation standards optimized for both human readability and machine processing, enabling hyper-intelligent agents to effectively navigate and utilize the knowledge base.
Machine-Readable Structure
Metadata Standards
---
title: Document Title
type: [concept|guide|api|example|template]
status: [draft|stable|deprecated]
created: YYYY-MM-DD
updated: YYYY-MM-DD
complexity: [basic|intermediate|advanced]
processing_priority: [1-5]
semantic_relations:
- type: prerequisite
links: [[prerequisite_doc]]
- type: implements
links: [[implementation_doc]]
tags:
- category
- subcategory
- specific_topic
---
Semantic Markup
<!-- Semantic section markers for machine parsing -->
#BEGIN_CONCEPT key_concept_name
Core concept definition and explanation
#END_CONCEPT
#BEGIN_IMPLEMENTATION
Implementation details
#END_IMPLEMENTATION
#BEGIN_VALIDATION
Validation criteria
#END_VALIDATION
Knowledge Graph Structure
Relationship Types
- Hierarchical
is_a: Inheritance relationshipspart_of: Compositional relationshipsimplements: Implementation relationships
Link Annotations
- [[concept]] {type: prerequisite, weight: 0.8}
- [[implementation]] {type: implements, confidence: 0.9}
- [[related_concept]] {type: semantic_similarity, score: 0.85}
Graph Metadata
graph_properties:
density: 0.7
centrality: 0.8
cluster_coefficient: 0.6
Machine Learning Integration
Training Data Markers
# @training_example
def example_function():
"""
This example demonstrates concept X.
Training labels: [concept_x, implementation, basic]
"""
pass
Model References
model_integration:
embeddings: sentence-transformers/all-mpnet-base-v2
classifier: cognitive_model_classifier_v1
validation: validation_model_v1
Performance Metrics
# @performance_metrics
{
"accuracy": 0.95,
"latency": "10ms",
"resource_usage": "150MB"
}
Intelligent Processing Guidelines
1. Semantic Clarity
- Use precise, unambiguous terminology
- Maintain consistent concept references
- Provide explicit relationship definitions
2. Context Preservation
#BEGIN_CONTEXT
- Execution environment: [[runtime_environment]]
- Required capabilities: [[capability_list]]
- Constraints: [[system_constraints]]
#END_CONTEXT
3. Validation Hooks
# @validation_hook
def validate_implementation():
"""
Validation criteria:
1. [[requirement_1]]
2. [[requirement_2]]
"""
pass
File Organization
Directory Structure
documentation/
├── concepts/ # Foundational knowledge
│ ├── atomic/ # Indivisible concepts
│ └── composite/ # Combined concepts
├── implementations/ # Concrete implementations
│ ├── core/ # Core functionality
│ └── extensions/ # Extended features
└── validations/ # Validation criteria
File Naming
naming_pattern = {
'concepts': 'concept_{category}_{name}.md',
'implementations': 'impl_{system}_{component}.md',
'validations': 'val_{type}_{target}.md'
}
Processing Instructions
1. Priority Levels
processing_priority:
P1: "Critical path concepts"
P2: "Core dependencies"
P3: "Supporting information"
P4: "Examples and extensions"
P5: "Additional context"
2. Processing Directives
#PROCESS_MODE: sequential|parallel
#DEPENDENCY_CHECK: strict|flexible
#VALIDATION_LEVEL: basic|complete
3. Resource Management
resource_requirements:
memory: "4GB"
processing_time: "30s"
api_calls: 10
Validation Framework
1. Consistency Checks
# @consistency_check
def verify_documentation():
"""
Verify:
1. Link integrity
2. Semantic consistency
3. Implementation alignment
"""
pass
2. Completeness Metrics
completeness_criteria:
concepts: 0.95
implementations: 0.90
validations: 0.85
cross_references: 0.80
3. Quality Assurance
# @quality_metrics
{
"clarity_score": 0.9,
"completeness_score": 0.85,
"consistency_score": 0.95
}
Integration Examples
1. Knowledge Integration
# Example of knowledge integration
from cognitive_system import KnowledgeGraph
graph = KnowledgeGraph()
graph.add_concept("[[concept_name]]", {
"relationships": ["[[related_concept]]"],
"implementations": ["[[implementation]]"],
"validations": ["[[validation]]"]
})
2. Processing Pipeline
graph TD
A[Parse Documentation] --> B[Extract Knowledge]
B --> C[Build Graph]
C --> D[Validate]
D --> E[Integrate]
3. Validation Flow
graph LR
A[Documentation] --> B[Static Analysis]
B --> C[Semantic Validation]
C --> D[Integration Testing]
D --> E[Knowledge Verification]