зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-30 12:46:04 +02:00
271 строка
5.5 KiB
Markdown
271 строка
5.5 KiB
Markdown
# AI Documentation Style Guide
|
|
|
|
---
|
|
title: AI Documentation Style Guide
|
|
type: guide
|
|
status: stable
|
|
created: 2024-02-06
|
|
tags:
|
|
- style
|
|
- ai
|
|
- documentation
|
|
- machine-readable
|
|
related:
|
|
- [[machine_readability]]
|
|
- [[knowledge_organization]]
|
|
- [[documentation_standards]]
|
|
---
|
|
|
|
## Overview
|
|
This guide establishes documentation standards optimized for both human readability and machine processing, enabling hyper-intelligent agents to effectively navigate and utilize the knowledge base.
|
|
|
|
## Machine-Readable Structure
|
|
|
|
### Metadata Standards
|
|
```yaml
|
|
---
|
|
title: Document Title
|
|
type: [concept|guide|api|example|template]
|
|
status: [draft|stable|deprecated]
|
|
created: YYYY-MM-DD
|
|
updated: YYYY-MM-DD
|
|
complexity: [basic|intermediate|advanced]
|
|
processing_priority: [1-5]
|
|
semantic_relations:
|
|
- type: prerequisite
|
|
links: [[prerequisite_doc]]
|
|
- type: implements
|
|
links: [[implementation_doc]]
|
|
tags:
|
|
- category
|
|
- subcategory
|
|
- specific_topic
|
|
---
|
|
```
|
|
|
|
### Semantic Markup
|
|
```markdown
|
|
<!-- Semantic section markers for machine parsing -->
|
|
#BEGIN_CONCEPT key_concept_name
|
|
Core concept definition and explanation
|
|
#END_CONCEPT
|
|
|
|
#BEGIN_IMPLEMENTATION
|
|
Implementation details
|
|
#END_IMPLEMENTATION
|
|
|
|
#BEGIN_VALIDATION
|
|
Validation criteria
|
|
#END_VALIDATION
|
|
```
|
|
|
|
## Knowledge Graph Structure
|
|
|
|
### Relationship Types
|
|
- **Hierarchical**
|
|
- `is_a`: Inheritance relationships
|
|
- `part_of`: Compositional relationships
|
|
- `implements`: Implementation relationships
|
|
|
|
### Link Annotations
|
|
```markdown
|
|
- [[concept]] {type: prerequisite, weight: 0.8}
|
|
- [[implementation]] {type: implements, confidence: 0.9}
|
|
- [[related_concept]] {type: semantic_similarity, score: 0.85}
|
|
```
|
|
|
|
### Graph Metadata
|
|
```yaml
|
|
graph_properties:
|
|
density: 0.7
|
|
centrality: 0.8
|
|
cluster_coefficient: 0.6
|
|
```
|
|
|
|
## Machine Learning Integration
|
|
|
|
### Training Data Markers
|
|
```python
|
|
# @training_example
|
|
def example_function():
|
|
"""
|
|
This example demonstrates concept X.
|
|
Training labels: [concept_x, implementation, basic]
|
|
"""
|
|
pass
|
|
```
|
|
|
|
### Model References
|
|
```yaml
|
|
model_integration:
|
|
embeddings: sentence-transformers/all-mpnet-base-v2
|
|
classifier: cognitive_model_classifier_v1
|
|
validation: validation_model_v1
|
|
```
|
|
|
|
### Performance Metrics
|
|
```python
|
|
# @performance_metrics
|
|
{
|
|
"accuracy": 0.95,
|
|
"latency": "10ms",
|
|
"resource_usage": "150MB"
|
|
}
|
|
```
|
|
|
|
## Intelligent Processing Guidelines
|
|
|
|
### 1. Semantic Clarity
|
|
- Use precise, unambiguous terminology
|
|
- Maintain consistent concept references
|
|
- Provide explicit relationship definitions
|
|
|
|
### 2. Context Preservation
|
|
```markdown
|
|
#BEGIN_CONTEXT
|
|
- Execution environment: [[runtime_environment]]
|
|
- Required capabilities: [[capability_list]]
|
|
- Constraints: [[system_constraints]]
|
|
#END_CONTEXT
|
|
```
|
|
|
|
### 3. Validation Hooks
|
|
```python
|
|
# @validation_hook
|
|
def validate_implementation():
|
|
"""
|
|
Validation criteria:
|
|
1. [[requirement_1]]
|
|
2. [[requirement_2]]
|
|
"""
|
|
pass
|
|
```
|
|
|
|
## File Organization
|
|
|
|
### Directory Structure
|
|
```
|
|
documentation/
|
|
├── concepts/ # Foundational knowledge
|
|
│ ├── atomic/ # Indivisible concepts
|
|
│ └── composite/ # Combined concepts
|
|
├── implementations/ # Concrete implementations
|
|
│ ├── core/ # Core functionality
|
|
│ └── extensions/ # Extended features
|
|
└── validations/ # Validation criteria
|
|
```
|
|
|
|
### File Naming
|
|
```python
|
|
naming_pattern = {
|
|
'concepts': 'concept_{category}_{name}.md',
|
|
'implementations': 'impl_{system}_{component}.md',
|
|
'validations': 'val_{type}_{target}.md'
|
|
}
|
|
```
|
|
|
|
## Processing Instructions
|
|
|
|
### 1. Priority Levels
|
|
```yaml
|
|
processing_priority:
|
|
P1: "Critical path concepts"
|
|
P2: "Core dependencies"
|
|
P3: "Supporting information"
|
|
P4: "Examples and extensions"
|
|
P5: "Additional context"
|
|
```
|
|
|
|
### 2. Processing Directives
|
|
```markdown
|
|
#PROCESS_MODE: sequential|parallel
|
|
#DEPENDENCY_CHECK: strict|flexible
|
|
#VALIDATION_LEVEL: basic|complete
|
|
```
|
|
|
|
### 3. Resource Management
|
|
```yaml
|
|
resource_requirements:
|
|
memory: "4GB"
|
|
processing_time: "30s"
|
|
api_calls: 10
|
|
```
|
|
|
|
## Validation Framework
|
|
|
|
### 1. Consistency Checks
|
|
```python
|
|
# @consistency_check
|
|
def verify_documentation():
|
|
"""
|
|
Verify:
|
|
1. Link integrity
|
|
2. Semantic consistency
|
|
3. Implementation alignment
|
|
"""
|
|
pass
|
|
```
|
|
|
|
### 2. Completeness Metrics
|
|
```yaml
|
|
completeness_criteria:
|
|
concepts: 0.95
|
|
implementations: 0.90
|
|
validations: 0.85
|
|
cross_references: 0.80
|
|
```
|
|
|
|
### 3. Quality Assurance
|
|
```python
|
|
# @quality_metrics
|
|
{
|
|
"clarity_score": 0.9,
|
|
"completeness_score": 0.85,
|
|
"consistency_score": 0.95
|
|
}
|
|
```
|
|
|
|
## Integration Examples
|
|
|
|
### 1. Knowledge Integration
|
|
```python
|
|
# Example of knowledge integration
|
|
from cognitive_system import KnowledgeGraph
|
|
|
|
graph = KnowledgeGraph()
|
|
graph.add_concept("[[concept_name]]", {
|
|
"relationships": ["[[related_concept]]"],
|
|
"implementations": ["[[implementation]]"],
|
|
"validations": ["[[validation]]"]
|
|
})
|
|
```
|
|
|
|
### 2. Processing Pipeline
|
|
```mermaid
|
|
graph TD
|
|
A[Parse Documentation] --> B[Extract Knowledge]
|
|
B --> C[Build Graph]
|
|
C --> D[Validate]
|
|
D --> E[Integrate]
|
|
```
|
|
|
|
### 3. Validation Flow
|
|
```mermaid
|
|
graph LR
|
|
A[Documentation] --> B[Static Analysis]
|
|
B --> C[Semantic Validation]
|
|
C --> D[Integration Testing]
|
|
D --> E[Knowledge Verification]
|
|
```
|
|
|
|
## Related Documentation
|
|
- [[machine_readability]]
|
|
- [[knowledge_graph_structure]]
|
|
- [[validation_framework]]
|
|
- [[ai_processing_guidelines]]
|
|
|
|
## References
|
|
- [[documentation_standards]]
|
|
- [[machine_learning_integration]]
|
|
- [[knowledge_representation]]
|
|
- [[validation_methods]] |