зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-29 12:16:04 +02:00
5.8 KiB
5.8 KiB
AI-Oriented File Organization
title: AI File Organization Guide type: guide status: stable created: 2024-02-06 tags:
- organization
- structure
- ai
- metadata related:
- ai_documentation_style
- knowledge_organization
- machine_readability
Overview
This guide defines the file organization structure optimized for AI processing, knowledge graph construction, and intelligent navigation of the cognitive modeling system.
Directory Structure
Root Organization
cognitive_modeling/
├── docs/ # Documentation root
│ ├── concepts/ # Core concepts
│ │ ├── atomic/ # Fundamental concepts
│ │ ├── composite/ # Combined concepts
│ │ └── meta/ # Meta-concepts
│ │
│ ├── implementations/ # Implementation details
│ │ ├── core/ # Core implementations
│ │ ├── extensions/ # Extended features
│ │ └── integrations/ # System integrations
│ │
│ ├── knowledge_base/ # Knowledge representation
│ │ ├── ontology/ # Domain ontologies
│ │ ├── graphs/ # Knowledge graphs
│ │ └── embeddings/ # Neural embeddings
│ │
│ ├── ml_artifacts/ # Machine learning artifacts
│ │ ├── models/ # Model specifications
│ │ ├── training/ # Training configurations
│ │ └── evaluation/ # Evaluation metrics
│ │
│ └── validation/ # Validation framework
│ ├── tests/ # Test specifications
│ ├── metrics/ # Quality metrics
│ └── reports/ # Validation reports
File Naming Conventions
Pattern Specifications
file_patterns = {
'concepts': {
'pattern': '{category}_{name}_{version}.md',
'example': 'belief_updating_v1.md'
},
'implementations': {
'pattern': 'impl_{system}_{component}_{version}.md',
'example': 'impl_inference_engine_v2.md'
},
'knowledge': {
'pattern': 'kb_{domain}_{concept}_{type}.md',
'example': 'kb_cognitive_belief_ontology.md'
},
'ml': {
'pattern': 'ml_{task}_{model}_{version}.md',
'example': 'ml_classification_transformer_v1.md'
}
}
Metadata Structure
file_metadata:
naming:
prefix: string # Category prefix
body: string # Main identifier
version: string # Version identifier
extension: string # File extension
processing:
priority: integer # Processing priority
dependencies: list # File dependencies
validation: string # Validation requirements
Directory Metadata
Directory Configuration
directory_config:
concepts:
index_required: true
graph_required: true
validation_required: true
implementations:
index_required: true
tests_required: true
documentation_required: true
knowledge_base:
ontology_required: true
embeddings_required: true
graph_required: true
Processing Instructions
processing_config:
parallel_processing: boolean
dependency_checking: string
validation_level: string
caching_strategy: string
Knowledge Organization
Concept Hierarchy
graph TD
A[Root Concepts] --> B[Atomic Concepts]
A --> C[Composite Concepts]
B --> D[Properties]
B --> E[Relations]
C --> F[Patterns]
C --> G[Systems]
Implementation Structure
graph LR
A[Core] --> B[Components]
B --> C[Interfaces]
B --> D[Implementations]
D --> E[Extensions]
D --> F[Integrations]
File Templates
Concept File Template
# Concept: {name}
#BEGIN_METADATA
version: string
category: string
complexity: string
#END_METADATA
#BEGIN_CONTENT
content: string
#END_CONTENT
#BEGIN_VALIDATION
validation: object
#END_VALIDATION
Implementation File Template
# Implementation: {name}
#BEGIN_METADATA
version: string
system: string
component: string
#END_METADATA
#BEGIN_SPECIFICATION
specification: object
#END_SPECIFICATION
#BEGIN_VALIDATION
validation: object
#END_VALIDATION
Validation Rules
Directory Validation
# @directory_validation
{
"required_files": ["index.md", "README.md"],
"required_metadata": ["version", "status"],
"required_structures": ["graph", "validation"]
}
File Validation
# @file_validation
{
"naming_convention": bool,
"metadata_complete": bool,
"content_valid": bool,
"links_valid": bool
}
Integration Guidelines
Knowledge Graph Integration
# @graph_integration
def integrate_knowledge():
"""
Integration steps:
1. Parse directory structure
2. Extract metadata
3. Build relationships
4. Validate graph
"""
pass
Machine Learning Pipeline
# @ml_pipeline
def process_documentation():
"""
Processing steps:
1. Extract features
2. Generate embeddings
3. Train models
4. Validate results
"""
pass
Best Practices
Organization Principles
-
Hierarchical Clarity
- Clear parent-child relationships
- Logical grouping of related content
- Consistent depth levels
-
Metadata Management
- Complete metadata at all levels
- Consistent metadata schema
- Regular validation
-
Processing Optimization
- Efficient file access patterns
- Optimized for parallel processing
- Caching-friendly structure