зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-30 04:36:05 +02:00
328 строки
6.7 KiB
Markdown
328 строки
6.7 KiB
Markdown
# AI Semantic Processing Guide
|
|
|
|
---
|
|
title: AI Semantic Processing Guide
|
|
type: guide
|
|
status: stable
|
|
created: 2024-02-06
|
|
tags:
|
|
- semantic
|
|
- embeddings
|
|
- ai
|
|
- processing
|
|
complexity: advanced
|
|
processing_priority: 1
|
|
semantic_relations:
|
|
- type: implements
|
|
links: [[machine_readability]]
|
|
- type: extends
|
|
links: [[knowledge_organization]]
|
|
embeddings:
|
|
model: sentence-transformers/all-mpnet-base-v2
|
|
dimensions: 768
|
|
---
|
|
|
|
## Overview
|
|
This guide defines semantic processing standards and embedding strategies for hyper-intelligent agents to effectively process and understand the knowledge base.
|
|
|
|
## Semantic Processing Framework
|
|
|
|
### Text Embeddings
|
|
```python
|
|
# @embedding_specification
|
|
embedding_config = {
|
|
"models": {
|
|
"text": "sentence-transformers/all-mpnet-base-v2",
|
|
"code": "microsoft/codebert-base",
|
|
"graph": "knowledge-graph-bert"
|
|
},
|
|
"dimensions": {
|
|
"text": 768,
|
|
"code": 768,
|
|
"graph": 512
|
|
},
|
|
"pooling": "mean",
|
|
"normalization": "l2"
|
|
}
|
|
```
|
|
|
|
### Semantic Markers
|
|
```yaml
|
|
semantic_markers:
|
|
concept:
|
|
prefix: "#CONCEPT:"
|
|
weight: 1.0
|
|
embedding_type: "text"
|
|
implementation:
|
|
prefix: "#IMPL:"
|
|
weight: 0.8
|
|
embedding_type: "code"
|
|
relationship:
|
|
prefix: "#REL:"
|
|
weight: 0.9
|
|
embedding_type: "graph"
|
|
```
|
|
|
|
## Knowledge Graph Integration
|
|
|
|
### Graph Structure
|
|
```python
|
|
# @graph_specification
|
|
class KnowledgeGraphNode:
|
|
"""
|
|
Knowledge graph node with semantic embeddings
|
|
"""
|
|
def __init__(self):
|
|
self.embeddings = {
|
|
"text": np.ndarray, # Text embedding
|
|
"code": np.ndarray, # Code embedding
|
|
"graph": np.ndarray # Graph structure embedding
|
|
}
|
|
self.relationships = [] # Typed edges
|
|
self.metadata = {} # Node metadata
|
|
```
|
|
|
|
### Relationship Types
|
|
```yaml
|
|
relationship_types:
|
|
hierarchical:
|
|
- is_a: 0.9 # Type hierarchy
|
|
- part_of: 0.8 # Composition
|
|
- implements: 0.7 # Implementation
|
|
semantic:
|
|
- similar_to: 0.6 # Semantic similarity
|
|
- related_to: 0.5 # General relation
|
|
- references: 0.4 # Reference relation
|
|
temporal:
|
|
- precedes: 0.8 # Temporal ordering
|
|
- depends_on: 0.7 # Dependency
|
|
- evolves_to: 0.6 # Evolution
|
|
```
|
|
|
|
## Processing Instructions
|
|
|
|
### Embedding Generation
|
|
```python
|
|
# @embedding_generation
|
|
def generate_embeddings(content: str, type: str) -> dict:
|
|
"""
|
|
Generate embeddings for content
|
|
|
|
Processing steps:
|
|
1. Preprocess content based on type
|
|
2. Select appropriate model
|
|
3. Generate embeddings
|
|
4. Post-process and validate
|
|
"""
|
|
pass
|
|
```
|
|
|
|
### Semantic Analysis
|
|
```python
|
|
# @semantic_analysis
|
|
def analyze_semantics(node: KnowledgeGraphNode) -> dict:
|
|
"""
|
|
Analyze semantic content
|
|
|
|
Analysis steps:
|
|
1. Extract key concepts
|
|
2. Identify relationships
|
|
3. Compute similarities
|
|
4. Generate insights
|
|
"""
|
|
pass
|
|
```
|
|
|
|
## Query Processing
|
|
|
|
### Semantic Search
|
|
```python
|
|
# @semantic_search
|
|
def semantic_search(query: str, context: dict) -> list:
|
|
"""
|
|
Semantic search implementation
|
|
|
|
Search process:
|
|
1. Embed query
|
|
2. Compute similarities
|
|
3. Filter by context
|
|
4. Rank results
|
|
"""
|
|
pass
|
|
```
|
|
|
|
### Relationship Inference
|
|
```python
|
|
# @relationship_inference
|
|
def infer_relationships(source: KnowledgeGraphNode, target: KnowledgeGraphNode) -> list:
|
|
"""
|
|
Infer relationships between nodes
|
|
|
|
Inference steps:
|
|
1. Compare embeddings
|
|
2. Analyze context
|
|
3. Apply inference rules
|
|
4. Validate relationships
|
|
"""
|
|
pass
|
|
```
|
|
|
|
## Processing Pipeline
|
|
|
|
### Document Processing
|
|
```mermaid
|
|
graph TD
|
|
A[Raw Document] --> B[Text Extraction]
|
|
B --> C[Semantic Parsing]
|
|
C --> D[Embedding Generation]
|
|
D --> E[Graph Integration]
|
|
E --> F[Validation]
|
|
```
|
|
|
|
### Query Processing
|
|
```mermaid
|
|
graph LR
|
|
A[Query] --> B[Query Embedding]
|
|
B --> C[Similarity Search]
|
|
C --> D[Context Analysis]
|
|
D --> E[Result Ranking]
|
|
```
|
|
|
|
## Optimization Guidelines
|
|
|
|
### Embedding Optimization
|
|
```python
|
|
# @embedding_optimization
|
|
optimization_config = {
|
|
"caching": {
|
|
"strategy": "least_recently_used",
|
|
"max_size": "10GB",
|
|
"ttl": "24h"
|
|
},
|
|
"computation": {
|
|
"batch_size": 32,
|
|
"precision": "float16",
|
|
"device": "cuda"
|
|
},
|
|
"storage": {
|
|
"format": "memory_mapped",
|
|
"compression": "lz4",
|
|
"indexing": "faiss"
|
|
}
|
|
}
|
|
```
|
|
|
|
### Performance Tuning
|
|
```yaml
|
|
performance_config:
|
|
embedding_generation:
|
|
batch_size: 32
|
|
max_length: 512
|
|
truncation: true
|
|
similarity_search:
|
|
index_type: "IVFFlat"
|
|
nprobe: 16
|
|
metric: "cosine"
|
|
graph_operations:
|
|
max_depth: 3
|
|
beam_width: 5
|
|
pruning_threshold: 0.5
|
|
```
|
|
|
|
## Validation Framework
|
|
|
|
### Quality Metrics
|
|
```python
|
|
# @quality_metrics
|
|
def compute_quality_metrics(embeddings: dict) -> dict:
|
|
"""
|
|
Compute quality metrics for embeddings
|
|
|
|
Metrics:
|
|
1. Coverage
|
|
2. Consistency
|
|
3. Coherence
|
|
4. Discriminative power
|
|
"""
|
|
return {
|
|
"coverage": 0.95,
|
|
"consistency": 0.92,
|
|
"coherence": 0.88,
|
|
"discrimination": 0.90
|
|
}
|
|
```
|
|
|
|
### Validation Rules
|
|
```python
|
|
# @validation_rules
|
|
validation_config = {
|
|
"embeddings": {
|
|
"dimension_check": True,
|
|
"norm_check": True,
|
|
"coverage_threshold": 0.9
|
|
},
|
|
"relationships": {
|
|
"symmetry_check": True,
|
|
"transitivity_check": True,
|
|
"cycle_detection": True
|
|
},
|
|
"graph": {
|
|
"connectivity_check": True,
|
|
"consistency_check": True,
|
|
"completeness_check": True
|
|
}
|
|
}
|
|
```
|
|
|
|
## Integration Examples
|
|
|
|
### Knowledge Base Integration
|
|
```python
|
|
# Example of knowledge base integration
|
|
from cognitive_system import SemanticProcessor
|
|
|
|
processor = SemanticProcessor(config=embedding_config)
|
|
|
|
# Process document
|
|
doc_embeddings = processor.process_document(
|
|
content=document,
|
|
type="concept",
|
|
context={"domain": "cognitive_modeling"}
|
|
)
|
|
|
|
# Update knowledge graph
|
|
graph.add_node(
|
|
embeddings=doc_embeddings,
|
|
relationships=inferred_relationships,
|
|
metadata=document_metadata
|
|
)
|
|
```
|
|
|
|
### Query Integration
|
|
```python
|
|
# Example of semantic query
|
|
results = processor.semantic_search(
|
|
query="active inference implementation",
|
|
filters={
|
|
"type": "implementation",
|
|
"status": "stable",
|
|
"complexity": ["intermediate", "advanced"]
|
|
},
|
|
ranking={
|
|
"relevance": 0.7,
|
|
"recency": 0.3
|
|
}
|
|
)
|
|
```
|
|
|
|
## Related Documentation
|
|
- [[ai_documentation_style]]
|
|
- [[knowledge_graph_structure]]
|
|
- [[embedding_framework]]
|
|
- [[semantic_search]]
|
|
|
|
## References
|
|
- [[embedding_techniques]]
|
|
- [[semantic_processing]]
|
|
- [[graph_algorithms]]
|
|
- [[optimization_strategies]] |