cognitive/docs/guides/learning_paths/active_inference_quantum_learning_path.md
Daniel Ari Friedman dc483bebf4 Updates
2025-02-12 16:10:29 -08:00

6.7 KiB

title type status created complexity processing_priority tags semantic_relations
Active Inference in Quantum Intelligence Learning Path learning_path stable 2024-03-15 advanced 1
active-inference
quantum-computing
quantum-intelligence
quantum-cognition
type links
specializes
active_inference_learning_path
type links
relates
quantum_computing_learning_path
quantum_information_learning_path
quantum_cognition_learning_path

Active Inference in Quantum Intelligence Learning Path

Overview

This specialized path focuses on applying Active Inference in quantum computational systems, exploring quantum advantages in intelligence and cognition. It integrates quantum computing, quantum information theory, and quantum cognitive architectures.

Prerequisites

1. Quantum Foundations (4 weeks)

  • Quantum Computing

    • Quantum mechanics
    • Quantum circuits
    • Quantum algorithms
    • Quantum error correction
  • Quantum Information

    • Quantum states
    • Quantum entanglement
    • Quantum channels
    • Quantum measurements
  • Quantum Cognition

    • Quantum decision theory
    • Quantum probability
    • Quantum memory
    • Quantum learning
  • Mathematical Foundations

    • Linear algebra
    • Complex analysis
    • Tensor networks
    • Information theory

2. Technical Skills (2 weeks)

  • Quantum Tools
    • Qiskit/Cirq
    • Quantum simulators
    • Quantum debuggers
    • Quantum visualization

Core Learning Path

1. Quantum Intelligence Modeling (4 weeks)

Week 1-2: Quantum State Inference

class QuantumStateEstimator:
    def __init__(self,
                 n_qubits: int,
                 measurement_basis: List[str]):
        """Initialize quantum state estimator."""
        self.n_qubits = n_qubits
        self.quantum_circuit = QuantumCircuit(n_qubits)
        self.measurement_basis = measurement_basis
        
    def estimate_state(self,
                      measurements: torch.Tensor) -> QuantumState:
        """Estimate quantum state from measurements."""
        density_matrix = self._reconstruct_state(measurements)
        return self._apply_quantum_inference(density_matrix)

Week 3-4: Quantum Decision Making

class QuantumDecisionMaker:
    def __init__(self,
                 action_space: QuantumSpace,
                 utility_operator: QuantumOperator):
        """Initialize quantum decision maker."""
        self.action_space = action_space
        self.utility = utility_operator
        self.quantum_policy = QuantumPolicy()
        
    def select_action(self,
                     quantum_state: QuantumState,
                     uncertainty: QuantumUncertainty) -> QuantumAction:
        """Select quantum action under uncertainty."""
        superposition = self._create_action_superposition()
        measured_action = self._measure_optimal_action(superposition)
        return self._collapse_to_classical_action(measured_action)

2. Quantum Applications (6 weeks)

Week 1-2: Quantum Perception

  • Quantum sensing
  • Quantum measurement
  • Quantum state tomography
  • Quantum error correction

Week 3-4: Quantum Learning

  • Quantum neural networks
  • Quantum reinforcement learning
  • Quantum Bayesian inference
  • Quantum optimization

Week 5-6: Quantum Cognition

  • Quantum memory
  • Quantum decision theory
  • Quantum consciousness
  • Quantum social choice

3. Quantum Intelligence (4 weeks)

Week 1-2: Quantum Advantage

class QuantumAdvantage:
    def __init__(self,
                 classical_system: ClassicalSystem,
                 quantum_system: QuantumSystem):
        """Initialize quantum advantage analysis."""
        self.classical = classical_system
        self.quantum = quantum_system
        self.comparator = SystemComparator()
        
    def analyze_advantage(self,
                         problem_instance: Problem) -> AdvantageMetrics:
        """Analyze quantum advantage over classical."""
        classical_performance = self.classical.solve(problem_instance)
        quantum_performance = self.quantum.solve(problem_instance)
        return self.comparator.compute_advantage(
            classical_performance, quantum_performance
        )

Week 3-4: Quantum Architectures

  • Quantum circuits
  • Quantum algorithms
  • Quantum error mitigation
  • Quantum communication

4. Advanced Topics (4 weeks)

Week 1-2: Quantum-Classical Integration

class QuantumClassicalHybrid:
    def __init__(self,
                 quantum_processor: QuantumProcessor,
                 classical_processor: ClassicalProcessor):
        """Initialize hybrid quantum-classical system."""
        self.quantum = quantum_processor
        self.classical = classical_processor
        self.interface = QuantumClassicalInterface()
        
    def hybrid_computation(self,
                         problem: HybridProblem) -> Solution:
        """Perform hybrid quantum-classical computation."""
        quantum_part = self.quantum.process(problem.quantum_component)
        classical_part = self.classical.process(problem.classical_component)
        return self.interface.combine_results(quantum_part, classical_part)

Week 3-4: Future Quantum Intelligence

  • Quantum supremacy
  • Post-quantum computing
  • Quantum internet
  • Quantum AGI

Projects

Quantum Projects

  1. Quantum Implementation

    • Quantum circuits
    • Quantum algorithms
    • Error correction
    • State preparation
  2. Quantum Applications

    • Quantum sensing
    • Quantum learning
    • Quantum optimization
    • Quantum simulation

Advanced Projects

  1. Quantum Intelligence

    • Quantum advantage
    • Hybrid systems
    • Quantum memory
    • Quantum cognition
  2. Quantum Future

    • Quantum internet
    • Quantum security
    • Quantum communication
    • Quantum AGI

Resources

Academic Resources

  1. Research Papers

    • Quantum Computing
    • Quantum Information
    • Quantum Cognition
    • Quantum Intelligence
  2. Books

    • Quantum Mechanics
    • Quantum Computing
    • Quantum Information
    • Quantum Algorithms

Technical Resources

  1. Software Tools

    • Quantum SDKs
    • Quantum Simulators
    • Quantum Debuggers
    • Visualization Tools
  2. Hardware Resources

    • Quantum Processors
    • Quantum Computers
    • Quantum Networks
    • Quantum Sensors

Next Steps

Advanced Topics

  1. quantum_computing_learning_path
  2. quantum_information_learning_path
  3. quantum_cognition_learning_path

Research Directions

  1. research_guides/quantum_computing
  2. research_guides/quantum_intelligence
  3. research_guides/quantum_cognition