cognitive/docs/guides/machine_learning.md
Daniel Ari Friedman 59a4bfb111 Updates
2025-02-12 10:51:38 -08:00

4.5 KiB

title type status created tags semantic_relations
Machine Learning Guide guide draft 2024-02-12
machine-learning
ai
guide
type links
implements
ai_validation_framework
type links
relates
active_inference
predictive_processing

Machine Learning Guide

Overview

This guide covers machine learning concepts, implementations, and best practices in the cognitive modeling framework.

Core Concepts

Learning Paradigms

  1. Active Inference

  2. Predictive Processing

  3. Variational Methods

Implementation

Model Architecture

Base Components

class CognitiveModel:
    def __init__(self):
        self.belief_network = BeliefNetwork()
        self.action_policy = ActionPolicy()
        self.perception_model = PerceptionModel()

Learning Components

class LearningModule:
    def __init__(self):
        self.optimizer = FreeEnergyOptimizer()
        self.inference = VariationalInference()
        self.memory = EpisodicMemory()

Training Process

  1. Data Preparation

    def prepare_data(self, observations):
        """Prepare data for learning."""
        return self.preprocessor.transform(observations)
    
  2. Model Training

    def train_model(self, data, epochs=100):
        """Train the cognitive model."""
        for epoch in range(epochs):
            self.update_beliefs(data)
            self.optimize_policy()
            self.evaluate_performance()
    
  3. Evaluation

    def evaluate_model(self, test_data):
        """Evaluate model performance."""
        predictions = self.model.predict(test_data)
        metrics = self.compute_metrics(predictions)
        return metrics
    

Best Practices

Model Design

  1. Use hierarchical architectures
  2. Implement belief updating
  3. Enable active inference
  4. Support online learning

Training Process

  1. Validate assumptions
  2. Monitor convergence
  3. Track metrics
  4. Save checkpoints

Evaluation Methods

  1. Use multiple metrics
  2. Test edge cases
  3. Validate stability
  4. Compare baselines

Advanced Topics

Transfer Learning

Meta-Learning

Continual Learning

Integration

With Active Inference

class ActiveInferenceLearner:
    """Integrate learning with active inference."""
    def __init__(self):
        self.model = ActiveInferenceModel()
        self.learner = LearningModule()

With Predictive Processing

class PredictiveLearner:
    """Integrate learning with predictive processing."""
    def __init__(self):
        self.model = PredictiveModel()
        self.learner = LearningModule()

Validation

Model Validation

  1. Test prediction accuracy
  2. Validate belief updates
  3. Check action selection
  4. Verify learning stability

Performance Metrics

  1. Prediction error
  2. Free energy
  3. Action efficiency
  4. Learning rate

Examples

Basic Learning

# Initialize model
model = CognitiveModel()

# Train model
data = load_training_data()
model.train(data)

# Evaluate
results = model.evaluate(test_data)

Advanced Learning

# Initialize with transfer learning
model = CognitiveModel(pretrained=True)

# Configure meta-learning
model.enable_meta_learning()

# Train with continual learning
model.train_continual(data_stream)

Troubleshooting

Common Issues

  1. Convergence problems
  2. Memory limitations
  3. Performance bottlenecks
  4. Integration errors

Solutions

  1. Adjust learning rates
  2. Optimize memory usage
  3. Profile performance
  4. Debug integration