cognitive/docs/guides/machine_learning.md
Daniel Ari Friedman 59a4bfb111 Updates
2025-02-12 10:51:38 -08:00

216 строки
4.5 KiB
Markdown

---
title: Machine Learning Guide
type: guide
status: draft
created: 2024-02-12
tags:
- machine-learning
- ai
- guide
semantic_relations:
- type: implements
links: [[ai_validation_framework]]
- type: relates
links:
- [[active_inference]]
- [[predictive_processing]]
---
# Machine Learning Guide
## Overview
This guide covers machine learning concepts, implementations, and best practices in the cognitive modeling framework.
## Core Concepts
### Learning Paradigms
1. Active Inference
- Free energy minimization
- Belief updating
- Action selection
- See [[knowledge_base/cognitive/active_inference]]
2. Predictive Processing
- Prediction error minimization
- Hierarchical inference
- Precision weighting
- See [[knowledge_base/cognitive/predictive_processing]]
3. Variational Methods
- Variational inference
- Variational Bayes
- Mean field approximation
- See [[knowledge_base/mathematics/variational_inference]]
## Implementation
### Model Architecture
#### Base Components
```python
class CognitiveModel:
def __init__(self):
self.belief_network = BeliefNetwork()
self.action_policy = ActionPolicy()
self.perception_model = PerceptionModel()
```
#### Learning Components
```python
class LearningModule:
def __init__(self):
self.optimizer = FreeEnergyOptimizer()
self.inference = VariationalInference()
self.memory = EpisodicMemory()
```
### Training Process
1. Data Preparation
```python
def prepare_data(self, observations):
"""Prepare data for learning."""
return self.preprocessor.transform(observations)
```
2. Model Training
```python
def train_model(self, data, epochs=100):
"""Train the cognitive model."""
for epoch in range(epochs):
self.update_beliefs(data)
self.optimize_policy()
self.evaluate_performance()
```
3. Evaluation
```python
def evaluate_model(self, test_data):
"""Evaluate model performance."""
predictions = self.model.predict(test_data)
metrics = self.compute_metrics(predictions)
return metrics
```
## Best Practices
### Model Design
1. Use hierarchical architectures
2. Implement belief updating
3. Enable active inference
4. Support online learning
### Training Process
1. Validate assumptions
2. Monitor convergence
3. Track metrics
4. Save checkpoints
### Evaluation Methods
1. Use multiple metrics
2. Test edge cases
3. Validate stability
4. Compare baselines
## Advanced Topics
### Transfer Learning
- Pre-trained models
- Domain adaptation
- Knowledge transfer
- See [[knowledge_base/cognitive/transfer_learning]]
### Meta-Learning
- Learning to learn
- Adaptation strategies
- Parameter optimization
- See [[knowledge_base/cognitive/meta_learning]]
### Continual Learning
- Catastrophic forgetting
- Memory consolidation
- Stability-plasticity
- See [[knowledge_base/cognitive/continual_learning]]
## Integration
### With Active Inference
```python
class ActiveInferenceLearner:
"""Integrate learning with active inference."""
def __init__(self):
self.model = ActiveInferenceModel()
self.learner = LearningModule()
```
### With Predictive Processing
```python
class PredictiveLearner:
"""Integrate learning with predictive processing."""
def __init__(self):
self.model = PredictiveModel()
self.learner = LearningModule()
```
## Validation
### Model Validation
1. Test prediction accuracy
2. Validate belief updates
3. Check action selection
4. Verify learning stability
### Performance Metrics
1. Prediction error
2. Free energy
3. Action efficiency
4. Learning rate
## Examples
### Basic Learning
```python
# Initialize model
model = CognitiveModel()
# Train model
data = load_training_data()
model.train(data)
# Evaluate
results = model.evaluate(test_data)
```
### Advanced Learning
```python
# Initialize with transfer learning
model = CognitiveModel(pretrained=True)
# Configure meta-learning
model.enable_meta_learning()
# Train with continual learning
model.train_continual(data_stream)
```
## Troubleshooting
### Common Issues
1. Convergence problems
2. Memory limitations
3. Performance bottlenecks
4. Integration errors
### Solutions
1. Adjust learning rates
2. Optimize memory usage
3. Profile performance
4. Debug integration
## Related Documentation
- [[knowledge_base/cognitive/active_inference]]
- [[knowledge_base/cognitive/predictive_processing]]
- [[knowledge_base/mathematics/variational_inference]]
- [[docs/guides/ai_validation_framework]]