зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-30 12:46:04 +02:00
216 строки
4.5 KiB
Markdown
216 строки
4.5 KiB
Markdown
---
|
|
title: Machine Learning Guide
|
|
type: guide
|
|
status: draft
|
|
created: 2024-02-12
|
|
tags:
|
|
- machine-learning
|
|
- ai
|
|
- guide
|
|
semantic_relations:
|
|
- type: implements
|
|
links: [[ai_validation_framework]]
|
|
- type: relates
|
|
links:
|
|
- [[active_inference]]
|
|
- [[predictive_processing]]
|
|
---
|
|
|
|
# Machine Learning Guide
|
|
|
|
## Overview
|
|
|
|
This guide covers machine learning concepts, implementations, and best practices in the cognitive modeling framework.
|
|
|
|
## Core Concepts
|
|
|
|
### Learning Paradigms
|
|
|
|
1. Active Inference
|
|
- Free energy minimization
|
|
- Belief updating
|
|
- Action selection
|
|
- See [[knowledge_base/cognitive/active_inference]]
|
|
|
|
2. Predictive Processing
|
|
- Prediction error minimization
|
|
- Hierarchical inference
|
|
- Precision weighting
|
|
- See [[knowledge_base/cognitive/predictive_processing]]
|
|
|
|
3. Variational Methods
|
|
- Variational inference
|
|
- Variational Bayes
|
|
- Mean field approximation
|
|
- See [[knowledge_base/mathematics/variational_inference]]
|
|
|
|
## Implementation
|
|
|
|
### Model Architecture
|
|
|
|
#### Base Components
|
|
```python
|
|
class CognitiveModel:
|
|
def __init__(self):
|
|
self.belief_network = BeliefNetwork()
|
|
self.action_policy = ActionPolicy()
|
|
self.perception_model = PerceptionModel()
|
|
```
|
|
|
|
#### Learning Components
|
|
```python
|
|
class LearningModule:
|
|
def __init__(self):
|
|
self.optimizer = FreeEnergyOptimizer()
|
|
self.inference = VariationalInference()
|
|
self.memory = EpisodicMemory()
|
|
```
|
|
|
|
### Training Process
|
|
|
|
1. Data Preparation
|
|
```python
|
|
def prepare_data(self, observations):
|
|
"""Prepare data for learning."""
|
|
return self.preprocessor.transform(observations)
|
|
```
|
|
|
|
2. Model Training
|
|
```python
|
|
def train_model(self, data, epochs=100):
|
|
"""Train the cognitive model."""
|
|
for epoch in range(epochs):
|
|
self.update_beliefs(data)
|
|
self.optimize_policy()
|
|
self.evaluate_performance()
|
|
```
|
|
|
|
3. Evaluation
|
|
```python
|
|
def evaluate_model(self, test_data):
|
|
"""Evaluate model performance."""
|
|
predictions = self.model.predict(test_data)
|
|
metrics = self.compute_metrics(predictions)
|
|
return metrics
|
|
```
|
|
|
|
## Best Practices
|
|
|
|
### Model Design
|
|
1. Use hierarchical architectures
|
|
2. Implement belief updating
|
|
3. Enable active inference
|
|
4. Support online learning
|
|
|
|
### Training Process
|
|
1. Validate assumptions
|
|
2. Monitor convergence
|
|
3. Track metrics
|
|
4. Save checkpoints
|
|
|
|
### Evaluation Methods
|
|
1. Use multiple metrics
|
|
2. Test edge cases
|
|
3. Validate stability
|
|
4. Compare baselines
|
|
|
|
## Advanced Topics
|
|
|
|
### Transfer Learning
|
|
- Pre-trained models
|
|
- Domain adaptation
|
|
- Knowledge transfer
|
|
- See [[knowledge_base/cognitive/transfer_learning]]
|
|
|
|
### Meta-Learning
|
|
- Learning to learn
|
|
- Adaptation strategies
|
|
- Parameter optimization
|
|
- See [[knowledge_base/cognitive/meta_learning]]
|
|
|
|
### Continual Learning
|
|
- Catastrophic forgetting
|
|
- Memory consolidation
|
|
- Stability-plasticity
|
|
- See [[knowledge_base/cognitive/continual_learning]]
|
|
|
|
## Integration
|
|
|
|
### With Active Inference
|
|
```python
|
|
class ActiveInferenceLearner:
|
|
"""Integrate learning with active inference."""
|
|
def __init__(self):
|
|
self.model = ActiveInferenceModel()
|
|
self.learner = LearningModule()
|
|
```
|
|
|
|
### With Predictive Processing
|
|
```python
|
|
class PredictiveLearner:
|
|
"""Integrate learning with predictive processing."""
|
|
def __init__(self):
|
|
self.model = PredictiveModel()
|
|
self.learner = LearningModule()
|
|
```
|
|
|
|
## Validation
|
|
|
|
### Model Validation
|
|
1. Test prediction accuracy
|
|
2. Validate belief updates
|
|
3. Check action selection
|
|
4. Verify learning stability
|
|
|
|
### Performance Metrics
|
|
1. Prediction error
|
|
2. Free energy
|
|
3. Action efficiency
|
|
4. Learning rate
|
|
|
|
## Examples
|
|
|
|
### Basic Learning
|
|
```python
|
|
# Initialize model
|
|
model = CognitiveModel()
|
|
|
|
# Train model
|
|
data = load_training_data()
|
|
model.train(data)
|
|
|
|
# Evaluate
|
|
results = model.evaluate(test_data)
|
|
```
|
|
|
|
### Advanced Learning
|
|
```python
|
|
# Initialize with transfer learning
|
|
model = CognitiveModel(pretrained=True)
|
|
|
|
# Configure meta-learning
|
|
model.enable_meta_learning()
|
|
|
|
# Train with continual learning
|
|
model.train_continual(data_stream)
|
|
```
|
|
|
|
## Troubleshooting
|
|
|
|
### Common Issues
|
|
1. Convergence problems
|
|
2. Memory limitations
|
|
3. Performance bottlenecks
|
|
4. Integration errors
|
|
|
|
### Solutions
|
|
1. Adjust learning rates
|
|
2. Optimize memory usage
|
|
3. Profile performance
|
|
4. Debug integration
|
|
|
|
## Related Documentation
|
|
- [[knowledge_base/cognitive/active_inference]]
|
|
- [[knowledge_base/cognitive/predictive_processing]]
|
|
- [[knowledge_base/mathematics/variational_inference]]
|
|
- [[docs/guides/ai_validation_framework]] |