cognitive/docs/guides/research.md
Daniel Ari Friedman 59a4bfb111 Updates
2025-02-12 10:51:38 -08:00

256 строки
5.0 KiB
Markdown

---
title: Research Guide
type: guide
status: draft
created: 2024-02-12
tags:
- research
- guide
- methodology
semantic_relations:
- type: implements
links: [[documentation_standards]]
- type: relates
links:
- [[machine_learning]]
- [[ai_validation_framework]]
---
# Research Guide
## Overview
This guide outlines research methodologies, best practices, and workflows for conducting research in cognitive modeling.
## Research Areas
### Core Areas
1. Active Inference
- Free energy principle
- Belief updating
- Action selection
- See [[knowledge_base/cognitive/active_inference]]
2. Predictive Processing
- Hierarchical prediction
- Error minimization
- Precision weighting
- See [[knowledge_base/cognitive/predictive_processing]]
3. Cognitive Architecture
- Memory systems
- Learning mechanisms
- Decision making
- See [[knowledge_base/cognitive/cognitive_architecture]]
## Research Methodology
### Experimental Design
1. Hypothesis Formation
```python
class ResearchHypothesis:
def __init__(self):
self.theory = Theory()
self.predictions = Predictions()
self.variables = Variables()
```
2. Experimental Setup
```python
class Experiment:
def __init__(self):
self.conditions = Conditions()
self.controls = Controls()
self.measures = Measures()
```
3. Data Collection
```python
class DataCollection:
def __init__(self):
self.sensors = Sensors()
self.loggers = Loggers()
self.storage = Storage()
```
### Analysis Methods
1. Statistical Analysis
- Hypothesis testing
- Effect size calculation
- Power analysis
- See [[knowledge_base/mathematics/statistical_analysis]]
2. Model Comparison
- Parameter estimation
- Model selection
- Cross-validation
- See [[knowledge_base/mathematics/model_comparison]]
3. Performance Metrics
- Accuracy measures
- Efficiency metrics
- Robustness tests
- See [[docs/concepts/quality_metrics]]
## Research Workflow
### Planning Phase
1. Literature Review
- Search strategies
- Paper organization
- Citation management
- See [[docs/guides/literature_review]]
2. Research Design
- Hypothesis development
- Method selection
- Variable control
- See [[docs/guides/research_design]]
3. Protocol Development
- Experimental procedures
- Data collection
- Analysis plans
- See [[docs/guides/research_protocol]]
### Execution Phase
1. Data Collection
```python
def collect_data():
"""Collect experimental data."""
experiment = Experiment()
data = experiment.run()
return data
```
2. Analysis
```python
def analyze_data(data):
"""Analyze experimental data."""
analysis = Analysis()
results = analysis.process(data)
return results
```
3. Validation
```python
def validate_results(results):
"""Validate experimental results."""
validation = Validation()
metrics = validation.check(results)
return metrics
```
### Documentation Phase
1. Results Documentation
- Data organization
- Analysis documentation
- Figure generation
- See [[docs/guides/results_documentation]]
2. Paper Writing
- Structure
- Style guide
- Citation format
- See [[docs/guides/paper_writing]]
3. Code Documentation
- Implementation details
- Usage examples
- API documentation
- See [[docs/guides/code_documentation]]
## Best Practices
### Research Standards
1. Reproducibility
2. Transparency
3. Rigor
4. Ethics
### Code Standards
1. Version control
2. Documentation
3. Testing
4. Sharing
### Documentation Standards
1. Clear writing
2. Complete methods
3. Accessible data
4. Open source
## Tools and Resources
### Research Tools
1. Literature Management
- Reference managers
- Paper organizers
- Note-taking tools
2. Data Analysis
- Statistical packages
- Visualization tools
- Analysis frameworks
3. Documentation
- LaTeX templates
- Figure tools
- Documentation generators
### Computing Resources
1. Local Resources
- Development environment
- Testing setup
- Data storage
2. Cloud Resources
- Compute clusters
- Storage systems
- Collaboration tools
## Publication Process
### Paper Preparation
1. Writing guidelines
2. Figure preparation
3. Code packaging
4. Data organization
### Submission Process
1. Journal selection
2. Paper formatting
3. Code submission
4. Data sharing
### Review Process
1. Response strategies
2. Revision management
3. Rebuttal writing
4. Final submission
## Collaboration
### Team Coordination
1. Task management
2. Code sharing
3. Documentation
4. Communication
### External Collaboration
1. Data sharing
2. Code distribution
3. Knowledge transfer
4. Publication coordination
## Related Documentation
- [[docs/guides/machine_learning]]
- [[docs/guides/ai_validation_framework]]
- [[docs/guides/documentation_standards]]
- [[docs/guides/code_documentation]]