зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-29 12:16:04 +02:00
256 строки
5.0 KiB
Markdown
256 строки
5.0 KiB
Markdown
---
|
|
title: Research Guide
|
|
type: guide
|
|
status: draft
|
|
created: 2024-02-12
|
|
tags:
|
|
- research
|
|
- guide
|
|
- methodology
|
|
semantic_relations:
|
|
- type: implements
|
|
links: [[documentation_standards]]
|
|
- type: relates
|
|
links:
|
|
- [[machine_learning]]
|
|
- [[ai_validation_framework]]
|
|
---
|
|
|
|
# Research Guide
|
|
|
|
## Overview
|
|
|
|
This guide outlines research methodologies, best practices, and workflows for conducting research in cognitive modeling.
|
|
|
|
## Research Areas
|
|
|
|
### Core Areas
|
|
|
|
1. Active Inference
|
|
- Free energy principle
|
|
- Belief updating
|
|
- Action selection
|
|
- See [[knowledge_base/cognitive/active_inference]]
|
|
|
|
2. Predictive Processing
|
|
- Hierarchical prediction
|
|
- Error minimization
|
|
- Precision weighting
|
|
- See [[knowledge_base/cognitive/predictive_processing]]
|
|
|
|
3. Cognitive Architecture
|
|
- Memory systems
|
|
- Learning mechanisms
|
|
- Decision making
|
|
- See [[knowledge_base/cognitive/cognitive_architecture]]
|
|
|
|
## Research Methodology
|
|
|
|
### Experimental Design
|
|
|
|
1. Hypothesis Formation
|
|
```python
|
|
class ResearchHypothesis:
|
|
def __init__(self):
|
|
self.theory = Theory()
|
|
self.predictions = Predictions()
|
|
self.variables = Variables()
|
|
```
|
|
|
|
2. Experimental Setup
|
|
```python
|
|
class Experiment:
|
|
def __init__(self):
|
|
self.conditions = Conditions()
|
|
self.controls = Controls()
|
|
self.measures = Measures()
|
|
```
|
|
|
|
3. Data Collection
|
|
```python
|
|
class DataCollection:
|
|
def __init__(self):
|
|
self.sensors = Sensors()
|
|
self.loggers = Loggers()
|
|
self.storage = Storage()
|
|
```
|
|
|
|
### Analysis Methods
|
|
|
|
1. Statistical Analysis
|
|
- Hypothesis testing
|
|
- Effect size calculation
|
|
- Power analysis
|
|
- See [[knowledge_base/mathematics/statistical_analysis]]
|
|
|
|
2. Model Comparison
|
|
- Parameter estimation
|
|
- Model selection
|
|
- Cross-validation
|
|
- See [[knowledge_base/mathematics/model_comparison]]
|
|
|
|
3. Performance Metrics
|
|
- Accuracy measures
|
|
- Efficiency metrics
|
|
- Robustness tests
|
|
- See [[docs/concepts/quality_metrics]]
|
|
|
|
## Research Workflow
|
|
|
|
### Planning Phase
|
|
|
|
1. Literature Review
|
|
- Search strategies
|
|
- Paper organization
|
|
- Citation management
|
|
- See [[docs/guides/literature_review]]
|
|
|
|
2. Research Design
|
|
- Hypothesis development
|
|
- Method selection
|
|
- Variable control
|
|
- See [[docs/guides/research_design]]
|
|
|
|
3. Protocol Development
|
|
- Experimental procedures
|
|
- Data collection
|
|
- Analysis plans
|
|
- See [[docs/guides/research_protocol]]
|
|
|
|
### Execution Phase
|
|
|
|
1. Data Collection
|
|
```python
|
|
def collect_data():
|
|
"""Collect experimental data."""
|
|
experiment = Experiment()
|
|
data = experiment.run()
|
|
return data
|
|
```
|
|
|
|
2. Analysis
|
|
```python
|
|
def analyze_data(data):
|
|
"""Analyze experimental data."""
|
|
analysis = Analysis()
|
|
results = analysis.process(data)
|
|
return results
|
|
```
|
|
|
|
3. Validation
|
|
```python
|
|
def validate_results(results):
|
|
"""Validate experimental results."""
|
|
validation = Validation()
|
|
metrics = validation.check(results)
|
|
return metrics
|
|
```
|
|
|
|
### Documentation Phase
|
|
|
|
1. Results Documentation
|
|
- Data organization
|
|
- Analysis documentation
|
|
- Figure generation
|
|
- See [[docs/guides/results_documentation]]
|
|
|
|
2. Paper Writing
|
|
- Structure
|
|
- Style guide
|
|
- Citation format
|
|
- See [[docs/guides/paper_writing]]
|
|
|
|
3. Code Documentation
|
|
- Implementation details
|
|
- Usage examples
|
|
- API documentation
|
|
- See [[docs/guides/code_documentation]]
|
|
|
|
## Best Practices
|
|
|
|
### Research Standards
|
|
1. Reproducibility
|
|
2. Transparency
|
|
3. Rigor
|
|
4. Ethics
|
|
|
|
### Code Standards
|
|
1. Version control
|
|
2. Documentation
|
|
3. Testing
|
|
4. Sharing
|
|
|
|
### Documentation Standards
|
|
1. Clear writing
|
|
2. Complete methods
|
|
3. Accessible data
|
|
4. Open source
|
|
|
|
## Tools and Resources
|
|
|
|
### Research Tools
|
|
1. Literature Management
|
|
- Reference managers
|
|
- Paper organizers
|
|
- Note-taking tools
|
|
|
|
2. Data Analysis
|
|
- Statistical packages
|
|
- Visualization tools
|
|
- Analysis frameworks
|
|
|
|
3. Documentation
|
|
- LaTeX templates
|
|
- Figure tools
|
|
- Documentation generators
|
|
|
|
### Computing Resources
|
|
1. Local Resources
|
|
- Development environment
|
|
- Testing setup
|
|
- Data storage
|
|
|
|
2. Cloud Resources
|
|
- Compute clusters
|
|
- Storage systems
|
|
- Collaboration tools
|
|
|
|
## Publication Process
|
|
|
|
### Paper Preparation
|
|
1. Writing guidelines
|
|
2. Figure preparation
|
|
3. Code packaging
|
|
4. Data organization
|
|
|
|
### Submission Process
|
|
1. Journal selection
|
|
2. Paper formatting
|
|
3. Code submission
|
|
4. Data sharing
|
|
|
|
### Review Process
|
|
1. Response strategies
|
|
2. Revision management
|
|
3. Rebuttal writing
|
|
4. Final submission
|
|
|
|
## Collaboration
|
|
|
|
### Team Coordination
|
|
1. Task management
|
|
2. Code sharing
|
|
3. Documentation
|
|
4. Communication
|
|
|
|
### External Collaboration
|
|
1. Data sharing
|
|
2. Code distribution
|
|
3. Knowledge transfer
|
|
4. Publication coordination
|
|
|
|
## Related Documentation
|
|
- [[docs/guides/machine_learning]]
|
|
- [[docs/guides/ai_validation_framework]]
|
|
- [[docs/guides/documentation_standards]]
|
|
- [[docs/guides/code_documentation]] |