cognitive/docs/guides/research.md
Daniel Ari Friedman 59a4bfb111 Updates
2025-02-12 10:51:38 -08:00

5.0 KiB

title type status created tags semantic_relations
Research Guide guide draft 2024-02-12
research
guide
methodology
type links
implements
documentation_standards
type links
relates
machine_learning
ai_validation_framework

Research Guide

Overview

This guide outlines research methodologies, best practices, and workflows for conducting research in cognitive modeling.

Research Areas

Core Areas

  1. Active Inference

  2. Predictive Processing

  3. Cognitive Architecture

Research Methodology

Experimental Design

  1. Hypothesis Formation

    class ResearchHypothesis:
        def __init__(self):
            self.theory = Theory()
            self.predictions = Predictions()
            self.variables = Variables()
    
  2. Experimental Setup

    class Experiment:
        def __init__(self):
            self.conditions = Conditions()
            self.controls = Controls()
            self.measures = Measures()
    
  3. Data Collection

    class DataCollection:
        def __init__(self):
            self.sensors = Sensors()
            self.loggers = Loggers()
            self.storage = Storage()
    

Analysis Methods

  1. Statistical Analysis

  2. Model Comparison

  3. Performance Metrics

Research Workflow

Planning Phase

  1. Literature Review

  2. Research Design

  3. Protocol Development

Execution Phase

  1. Data Collection

    def collect_data():
        """Collect experimental data."""
        experiment = Experiment()
        data = experiment.run()
        return data
    
  2. Analysis

    def analyze_data(data):
        """Analyze experimental data."""
        analysis = Analysis()
        results = analysis.process(data)
        return results
    
  3. Validation

    def validate_results(results):
        """Validate experimental results."""
        validation = Validation()
        metrics = validation.check(results)
        return metrics
    

Documentation Phase

  1. Results Documentation

  2. Paper Writing

  3. Code Documentation

Best Practices

Research Standards

  1. Reproducibility
  2. Transparency
  3. Rigor
  4. Ethics

Code Standards

  1. Version control
  2. Documentation
  3. Testing
  4. Sharing

Documentation Standards

  1. Clear writing
  2. Complete methods
  3. Accessible data
  4. Open source

Tools and Resources

Research Tools

  1. Literature Management

    • Reference managers
    • Paper organizers
    • Note-taking tools
  2. Data Analysis

    • Statistical packages
    • Visualization tools
    • Analysis frameworks
  3. Documentation

    • LaTeX templates
    • Figure tools
    • Documentation generators

Computing Resources

  1. Local Resources

    • Development environment
    • Testing setup
    • Data storage
  2. Cloud Resources

    • Compute clusters
    • Storage systems
    • Collaboration tools

Publication Process

Paper Preparation

  1. Writing guidelines
  2. Figure preparation
  3. Code packaging
  4. Data organization

Submission Process

  1. Journal selection
  2. Paper formatting
  3. Code submission
  4. Data sharing

Review Process

  1. Response strategies
  2. Revision management
  3. Rebuttal writing
  4. Final submission

Collaboration

Team Coordination

  1. Task management
  2. Code sharing
  3. Documentation
  4. Communication

External Collaboration

  1. Data sharing
  2. Code distribution
  3. Knowledge transfer
  4. Publication coordination