зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-30 20:56:04 +02:00
3.2 KiB
3.2 KiB
| title | type | status | created | tags | semantic_relations | |||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Simulation Guide | guide | draft | 2024-02-12 |
|
|
Simulation Framework Guide
Overview
This guide provides comprehensive documentation for running simulations in the cognitive modeling framework. It covers simulation setup, execution, analysis, and visualization.
Simulation Components
Core Elements
-
Model Configuration
- Parameter settings
- Initial conditions
- Environment setup
- Agent definitions
-
Execution Pipeline
- Simulation steps
- State updates
- Event handling
- Data collection
-
Analysis Tools
- Data processing
- Statistical analysis
- Performance metrics
- Result validation
Configuration
simulation:
name: cognitive_simulation
duration: 1000 # timesteps
agents: 10
environment:
type: dynamic
dimensions: [100, 100]
parameters:
learning_rate: 0.01
noise_level: 0.1
update_interval: 5
Running Simulations
Basic Usage
from cognitive.simulation import Simulator
# Create simulator
sim = Simulator(config_path="config.yaml")
# Run simulation
results = sim.run()
# Analyze results
analysis = sim.analyze(results)
# Visualize
sim.visualize(analysis)
Advanced Features
-
Batch Processing
# Run multiple simulations batch_results = sim.run_batch( num_runs=10, parallel=True ) -
Parameter Sweeps
# Test different parameters param_results = sim.parameter_sweep( parameter="learning_rate", values=[0.01, 0.05, 0.1] ) -
Custom Callbacks
# Add custom monitoring @sim.on_step def monitor_state(state): log_metrics(state)
Analysis Tools
Data Processing
- Time series analysis
- State space analysis
- Agent behavior analysis
- Environment dynamics
Visualization
- State trajectories
- Agent interactions
- Performance metrics
- Network dynamics
Metrics
- Convergence rates
- Stability measures
- Efficiency metrics
- Error analysis
Best Practices
Performance
- Use vectorized operations
- Enable parallel processing
- Optimize memory usage
- Profile critical sections
Reproducibility
- Set random seeds
- Version configurations
- Document parameters
- Archive results
Validation
- Unit test components
- Verify constraints
- Check conservation laws
- Validate outputs
Advanced Topics
Custom Models
- Extending base classes
- Adding new behaviors
- Custom environments
- Specialized metrics
Distributed Simulation
- Multi-node execution
- Load balancing
- Data synchronization
- Result aggregation
Real-time Analysis
- Live monitoring
- Interactive visualization
- Dynamic adjustment
- Event handling
Integration Points
Data Pipeline
- Input preprocessing
- Result postprocessing
- Data storage
- Export formats
External Tools
- Visualization libraries
- Analysis packages
- Storage backends
- Monitoring systems