cognitive/docs/guides/simulation.md
Daniel Ari Friedman 59a4bfb111 Updates
2025-02-12 10:51:38 -08:00

186 строки
3.2 KiB
Markdown

---
title: Simulation Guide
type: guide
status: draft
created: 2024-02-12
tags:
- simulation
- modeling
- framework
semantic_relations:
- type: implements
links: [[model_implementation]]
- type: relates
links:
- [[implementation_guides]]
- [[ai_validation_framework]]
---
# Simulation Framework Guide
## Overview
This guide provides comprehensive documentation for running simulations in the cognitive modeling framework. It covers simulation setup, execution, analysis, and visualization.
## Simulation Components
### Core Elements
1. Model Configuration
- Parameter settings
- Initial conditions
- Environment setup
- Agent definitions
2. Execution Pipeline
- Simulation steps
- State updates
- Event handling
- Data collection
3. Analysis Tools
- Data processing
- Statistical analysis
- Performance metrics
- Result validation
### Configuration
```yaml
simulation:
name: cognitive_simulation
duration: 1000 # timesteps
agents: 10
environment:
type: dynamic
dimensions: [100, 100]
parameters:
learning_rate: 0.01
noise_level: 0.1
update_interval: 5
```
## Running Simulations
### Basic Usage
```python
from cognitive.simulation import Simulator
# Create simulator
sim = Simulator(config_path="config.yaml")
# Run simulation
results = sim.run()
# Analyze results
analysis = sim.analyze(results)
# Visualize
sim.visualize(analysis)
```
### Advanced Features
1. Batch Processing
```python
# Run multiple simulations
batch_results = sim.run_batch(
num_runs=10,
parallel=True
)
```
2. Parameter Sweeps
```python
# Test different parameters
param_results = sim.parameter_sweep(
parameter="learning_rate",
values=[0.01, 0.05, 0.1]
)
```
3. Custom Callbacks
```python
# Add custom monitoring
@sim.on_step
def monitor_state(state):
log_metrics(state)
```
## Analysis Tools
### Data Processing
- Time series analysis
- State space analysis
- Agent behavior analysis
- Environment dynamics
### Visualization
- State trajectories
- Agent interactions
- Performance metrics
- Network dynamics
### Metrics
- Convergence rates
- Stability measures
- Efficiency metrics
- Error analysis
## Best Practices
### Performance
- Use vectorized operations
- Enable parallel processing
- Optimize memory usage
- Profile critical sections
### Reproducibility
- Set random seeds
- Version configurations
- Document parameters
- Archive results
### Validation
- Unit test components
- Verify constraints
- Check conservation laws
- Validate outputs
## Advanced Topics
### Custom Models
- Extending base classes
- Adding new behaviors
- Custom environments
- Specialized metrics
### Distributed Simulation
- Multi-node execution
- Load balancing
- Data synchronization
- Result aggregation
### Real-time Analysis
- Live monitoring
- Interactive visualization
- Dynamic adjustment
- Event handling
## Integration Points
### Data Pipeline
- Input preprocessing
- Result postprocessing
- Data storage
- Export formats
### External Tools
- Visualization libraries
- Analysis packages
- Storage backends
- Monitoring systems
## Related Documentation
- [[model_implementation]]
- [[implementation_guides]]
- [[ai_validation_framework]]