зеркало из
				https://github.com/docxology/cognitive.git
				synced 2025-10-30 20:56:04 +02:00 
			
		
		
		
	
		
			
				
	
	
		
			186 строки
		
	
	
		
			3.2 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			186 строки
		
	
	
		
			3.2 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| title: Simulation Guide
 | |
| type: guide
 | |
| status: draft
 | |
| created: 2024-02-12
 | |
| tags:
 | |
|   - simulation
 | |
|   - modeling
 | |
|   - framework
 | |
| semantic_relations:
 | |
|   - type: implements
 | |
|     links: [[model_implementation]]
 | |
|   - type: relates
 | |
|     links:
 | |
|       - [[implementation_guides]]
 | |
|       - [[ai_validation_framework]]
 | |
| ---
 | |
| 
 | |
| # Simulation Framework Guide
 | |
| 
 | |
| ## Overview
 | |
| 
 | |
| This guide provides comprehensive documentation for running simulations in the cognitive modeling framework. It covers simulation setup, execution, analysis, and visualization.
 | |
| 
 | |
| ## Simulation Components
 | |
| 
 | |
| ### Core Elements
 | |
| 1. Model Configuration
 | |
|    - Parameter settings
 | |
|    - Initial conditions
 | |
|    - Environment setup
 | |
|    - Agent definitions
 | |
| 
 | |
| 2. Execution Pipeline
 | |
|    - Simulation steps
 | |
|    - State updates
 | |
|    - Event handling
 | |
|    - Data collection
 | |
| 
 | |
| 3. Analysis Tools
 | |
|    - Data processing
 | |
|    - Statistical analysis
 | |
|    - Performance metrics
 | |
|    - Result validation
 | |
| 
 | |
| ### Configuration
 | |
| 
 | |
| ```yaml
 | |
| simulation:
 | |
|   name: cognitive_simulation
 | |
|   duration: 1000  # timesteps
 | |
|   agents: 10
 | |
|   environment:
 | |
|     type: dynamic
 | |
|     dimensions: [100, 100]
 | |
|   parameters:
 | |
|     learning_rate: 0.01
 | |
|     noise_level: 0.1
 | |
|     update_interval: 5
 | |
| ```
 | |
| 
 | |
| ## Running Simulations
 | |
| 
 | |
| ### Basic Usage
 | |
| ```python
 | |
| from cognitive.simulation import Simulator
 | |
| 
 | |
| # Create simulator
 | |
| sim = Simulator(config_path="config.yaml")
 | |
| 
 | |
| # Run simulation
 | |
| results = sim.run()
 | |
| 
 | |
| # Analyze results
 | |
| analysis = sim.analyze(results)
 | |
| 
 | |
| # Visualize
 | |
| sim.visualize(analysis)
 | |
| ```
 | |
| 
 | |
| ### Advanced Features
 | |
| 
 | |
| 1. Batch Processing
 | |
|    ```python
 | |
|    # Run multiple simulations
 | |
|    batch_results = sim.run_batch(
 | |
|        num_runs=10,
 | |
|        parallel=True
 | |
|    )
 | |
|    ```
 | |
| 
 | |
| 2. Parameter Sweeps
 | |
|    ```python
 | |
|    # Test different parameters
 | |
|    param_results = sim.parameter_sweep(
 | |
|        parameter="learning_rate",
 | |
|        values=[0.01, 0.05, 0.1]
 | |
|    )
 | |
|    ```
 | |
| 
 | |
| 3. Custom Callbacks
 | |
|    ```python
 | |
|    # Add custom monitoring
 | |
|    @sim.on_step
 | |
|    def monitor_state(state):
 | |
|        log_metrics(state)
 | |
|    ```
 | |
| 
 | |
| ## Analysis Tools
 | |
| 
 | |
| ### Data Processing
 | |
| - Time series analysis
 | |
| - State space analysis
 | |
| - Agent behavior analysis
 | |
| - Environment dynamics
 | |
| 
 | |
| ### Visualization
 | |
| - State trajectories
 | |
| - Agent interactions
 | |
| - Performance metrics
 | |
| - Network dynamics
 | |
| 
 | |
| ### Metrics
 | |
| - Convergence rates
 | |
| - Stability measures
 | |
| - Efficiency metrics
 | |
| - Error analysis
 | |
| 
 | |
| ## Best Practices
 | |
| 
 | |
| ### Performance
 | |
| - Use vectorized operations
 | |
| - Enable parallel processing
 | |
| - Optimize memory usage
 | |
| - Profile critical sections
 | |
| 
 | |
| ### Reproducibility
 | |
| - Set random seeds
 | |
| - Version configurations
 | |
| - Document parameters
 | |
| - Archive results
 | |
| 
 | |
| ### Validation
 | |
| - Unit test components
 | |
| - Verify constraints
 | |
| - Check conservation laws
 | |
| - Validate outputs
 | |
| 
 | |
| ## Advanced Topics
 | |
| 
 | |
| ### Custom Models
 | |
| - Extending base classes
 | |
| - Adding new behaviors
 | |
| - Custom environments
 | |
| - Specialized metrics
 | |
| 
 | |
| ### Distributed Simulation
 | |
| - Multi-node execution
 | |
| - Load balancing
 | |
| - Data synchronization
 | |
| - Result aggregation
 | |
| 
 | |
| ### Real-time Analysis
 | |
| - Live monitoring
 | |
| - Interactive visualization
 | |
| - Dynamic adjustment
 | |
| - Event handling
 | |
| 
 | |
| ## Integration Points
 | |
| 
 | |
| ### Data Pipeline
 | |
| - Input preprocessing
 | |
| - Result postprocessing
 | |
| - Data storage
 | |
| - Export formats
 | |
| 
 | |
| ### External Tools
 | |
| - Visualization libraries
 | |
| - Analysis packages
 | |
| - Storage backends
 | |
| - Monitoring systems
 | |
| 
 | |
| ## Related Documentation
 | |
| - [[model_implementation]]
 | |
| - [[implementation_guides]]
 | |
| - [[ai_validation_framework]]  | 
