Daniel Ari Friedman a61f13a26f Updates
2025-02-07 11:08:25 -08:00

6.9 KiB

title type status created tags semantic_relations
Agents Index index stable 2024-02-07
agents
architectures
implementation
type links
organizes
active_inference_agents
pomdp_agents
swarm_agents

Agents Index

Core Agent Types

Active Inference Agents

# Basic active inference agent
class ActiveInferenceAgent:
    def __init__(self, config):
        self.beliefs = initialize_beliefs(config)
        self.model = create_generative_model(config)
        
    def update(self, observation):
        """Update agent state."""
        # Update beliefs
        self.beliefs = update_beliefs(
            self.beliefs, 
            observation, 
            self.model
        )
        
        # Select action
        action = select_action(self.beliefs, self.model)
        return action

POMDP Agents

# Basic POMDP agent
class POMDPAgent:
    def __init__(self, config):
        self.state_space = define_state_space(config)
        self.action_space = define_action_space(config)
        self.observation_model = create_observation_model(config)
        self.transition_model = create_transition_model(config)
        
    def update(self, observation):
        """Update agent state."""
        # Update belief state
        self.belief_state = update_belief_state(
            self.belief_state,
            observation,
            self.observation_model
        )
        
        # Select action
        action = select_policy(self.belief_state)
        return action

Swarm Agents

# Basic swarm agent
class SwarmAgent:
    def __init__(self, config):
        self.position = initialize_position(config)
        self.velocity = initialize_velocity(config)
        self.sensors = create_sensors(config)
        
    def update(self, neighbors, environment):
        """Update agent state."""
        # Process sensor information
        local_info = self.sensors.process(
            neighbors, 
            environment
        )
        
        # Update movement
        self.velocity = compute_velocity(local_info)
        self.position += self.velocity

Agent Architectures

Hierarchical Agents

Memory-Based Agents

Learning Agents

Implementation Components

Core Components

# Belief state management
class BeliefState:
    def __init__(self, config):
        self.prior = initialize_prior(config)
        self.likelihood = create_likelihood_model(config)
        
    def update(self, observation):
        """Update beliefs using Bayes rule."""
        posterior = bayes_update(
            self.prior,
            observation,
            self.likelihood
        )
        self.prior = posterior
        return posterior

# Policy selection
class PolicySelector:
    def __init__(self, config):
        self.policies = generate_policies(config)
        self.value_function = create_value_function(config)
        
    def select_action(self, belief_state):
        """Select action using policies."""
        values = evaluate_policies(
            self.policies,
            belief_state,
            self.value_function
        )
        return select_best_policy(values)

Advanced Features

# Hierarchical processing
class HierarchicalProcessor:
    def __init__(self, config):
        self.levels = create_hierarchy(config)
        self.connections = initialize_connections(config)
        
    def process(self, input_data):
        """Process input through hierarchy."""
        # Bottom-up pass
        for level in self.levels:
            features = level.extract_features(input_data)
            input_data = features
            
        # Top-down pass
        for level in reversed(self.levels):
            predictions = level.generate_predictions()
            level.update_state(predictions)

Integration Tools

# Environment integration
class EnvironmentInterface:
    def __init__(self, config):
        self.sensors = create_sensors(config)
        self.actuators = create_actuators(config)
        
    def observe(self, environment):
        """Get observations from environment."""
        return self.sensors.process(environment)
        
    def act(self, action):
        """Execute action in environment."""
        return self.actuators.execute(action)

Example Implementations

Basic Examples

Advanced Examples

Integration Examples

Applications

Robotics

Cognitive Systems

Swarm Systems

Research Directions

Current Research

Open Questions

Documentation

Knowledge Base

Learning Resources