зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-30 04:36:05 +02:00
19 KiB
19 KiB
Category Theory in Cognitive Modeling
title: Category Theory type: mathematical_concept status: stable created: 2024-02-06 tags:
- mathematics
- category-theory
- functors
- natural-transformations
- cognitive-modeling semantic_relations:
- type: implements links:
- type: uses links:
- type: documented_by links:
Overview
Category theory provides a unifying mathematical framework for understanding cognitive systems through abstract structures and their relationships. This document explores how categorical methods illuminate cognitive architectures, learning processes, and inference mechanisms.
Core Concepts
Categories
class Category:
"""
Abstract category implementation.
Properties:
- Objects: Collection of objects
- Morphisms: Arrows between objects
- Composition: Morphism composition
- Identity: Identity morphisms
"""
def __init__(self):
self.objects = set()
self.morphisms = dict()
self.compositions = dict()
def compose(self, f: Morphism, g: Morphism) -> Morphism:
"""Compose morphisms ensuring domain/codomain match."""
assert f.domain == g.codomain, "Morphisms not composable"
return self.compositions[(f, g)]
def identity(self, obj: Object) -> Morphism:
"""Get identity morphism for object."""
return self.morphisms[obj, obj]
Functors
class Functor:
"""
Structure-preserving map between categories.
Properties:
- Object mapping
- Morphism mapping
- Preserves composition
- Preserves identities
"""
def __init__(self, source: Category, target: Category):
self.source = source
self.target = target
self.object_map = dict()
self.morphism_map = dict()
def map_object(self, obj: Object) -> Object:
"""Map object from source to target category."""
return self.object_map[obj]
def map_morphism(self, morph: Morphism) -> Morphism:
"""Map morphism preserving structure."""
return self.morphism_map[morph]
Cognitive Applications
Belief Categories
class BeliefCategory(Category):
"""
Category of belief states and updates.
Objects:
- Belief distributions
- State spaces
- Observation spaces
Morphisms:
- Belief updates
- State transitions
- Observation mappings
"""
def belief_update(self,
prior: Distribution,
likelihood: ConditionalDistribution) -> Distribution:
"""Update belief using Bayesian morphism."""
return self.compose(likelihood, prior)
def state_transition(self,
current: State,
action: Action) -> State:
"""Transition between states via action morphism."""
return self.morphisms[(current, action)]
Free Energy Functors
class FreeEnergyFunctor(Functor):
"""
Functor mapping between belief and free energy categories.
Maps:
- Beliefs to free energies
- Updates to gradients
- Compositions to optimization steps
"""
def compute_free_energy(self, belief: Distribution) -> float:
"""Map belief to its free energy."""
return self.map_object(belief).evaluate()
def compute_gradient(self, update: Morphism) -> Gradient:
"""Map update to free energy gradient."""
return self.map_morphism(update).gradient()
Learning Functors
class LearningFunctor(Functor):
"""
Functor capturing learning processes.
Maps:
- Parameter spaces to model spaces
- Updates to learning steps
- Compositions to learning trajectories
"""
def learn_parameters(self,
data: Dataset,
model: Model) -> Parameters:
"""Learn parameters through functorial mapping."""
learning_morphism = self.get_learning_morphism(model)
return self.map_morphism(learning_morphism)(data)
Mathematical Structures
Monoidal Categories
class MonoidalCategory(Category):
"""
Monoidal category with tensor products.
Properties:
- Tensor product ⊗
- Unit object I
- Associator (A ⊗ B) ⊗ C ≅ A ⊗ (B ⊗ C)
- Left/right unitors I ⊗ A ≅ A ≅ A ⊗ I
"""
def __init__(self):
super().__init__()
self.unit = None
self.associators = {}
self.left_unitors = {}
self.right_unitors = {}
def tensor(self, A: Object, B: Object) -> Object:
"""Tensor product of objects."""
return self._compute_tensor(A, B)
def tensor_morphism(self, f: Morphism, g: Morphism) -> Morphism:
"""Tensor product of morphisms."""
return self._compute_tensor_morphism(f, g)
def associator(self, A: Object, B: Object, C: Object) -> Morphism:
"""Natural isomorphism for associativity."""
key = (A, B, C)
if key not in self.associators:
self.associators[key] = self._compute_associator(*key)
return self.associators[key]
Enriched Categories
class EnrichedCategory:
"""
Category enriched over a monoidal category.
Properties:
- Hom-objects in enriching category
- Enriched composition
- Enriched identities
"""
def __init__(self, base: Category, enriching: MonoidalCategory):
self.base = base
self.V = enriching
self.hom_objects = {}
self.compositions = {}
def hom(self, A: Object, B: Object) -> Object:
"""Hom-object in enriching category."""
key = (A, B)
if key not in self.hom_objects:
self.hom_objects[key] = self._compute_hom(*key)
return self.hom_objects[key]
def enriched_compose(self,
hom_AB: Object,
hom_BC: Object) -> Morphism:
"""Enriched composition morphism."""
return self.compositions.get(
(hom_AB, hom_BC),
self._compute_composition(hom_AB, hom_BC)
)
Natural Transformations
class NaturalTransformation:
"""
Natural transformation between functors.
Properties:
- Components for each object
- Naturality squares
- Vertical composition
- Horizontal composition
"""
def __init__(self,
source: Functor,
target: Functor):
self.F = source
self.G = target
self.components = {}
def component(self, A: Object) -> Morphism:
"""Component at object A."""
if A not in self.components:
self.components[A] = self._compute_component(A)
return self.components[A]
def verify_naturality(self, f: Morphism) -> bool:
"""Verify naturality condition for morphism."""
dom, cod = f.domain, f.codomain
square = {
'top': self.F.map_morphism(f),
'bottom': self.G.map_morphism(f),
'left': self.component(dom),
'right': self.component(cod)
}
return self._check_square_commutes(square)
Advanced Integration
Information Geometry Connection
class InformationGeometricCategory(EnrichedCategory):
"""
Category enriched over statistical manifolds.
Integration:
- [[information_geometry|Information Geometry]]
- [[differential_geometry|Differential Geometry]]
- [[statistical_manifolds|Statistical Manifolds]]
"""
def __init__(self):
super().__init__(
base=StatisticalManifold(),
enriching=RiemannianCategory()
)
def fisher_metric(self,
distribution: Object) -> Morphism:
"""Fisher information metric as enriched hom-object."""
return self.hom(distribution, distribution)
def natural_gradient(self,
tangent_vector: Morphism) -> Morphism:
"""Natural gradient using Fisher metric."""
return self._compute_natural_gradient(tangent_vector)
Free Energy Integration
class FreeEnergyCategory(MonoidalCategory):
"""
Category for free energy principles.
Integration:
- [[variational_methods|Variational Methods]]
- [[optimal_control|Optimal Control]]
- [[information_theory|Information Theory]]
"""
def __init__(self):
super().__init__()
self.variational_functor = VariationalFunctor(self)
self.control_functor = ControlFunctor(self)
def expected_free_energy(self,
policy: Morphism) -> float:
"""Compute expected free energy of policy."""
return self._compute_efe(policy)
def optimize_policy(self,
initial: Object,
target: Object) -> Morphism:
"""Optimize policy using free energy."""
return self._optimize_using_efe(initial, target)
Probabilistic Integration
class BayesianCategory(EnrichedCategory):
"""
Category for Bayesian inference.
Integration:
- [[probability_theory|Probability Theory]]
- [[measure_theory|Measure Theory]]
- [[bayesian_inference|Bayesian Inference]]
"""
def __init__(self):
super().__init__(
base=ProbabilitySpace(),
enriching=MeasureCategory()
)
def posterior(self,
prior: Object,
likelihood: Morphism) -> Object:
"""Compute posterior using enriched composition."""
return self.enriched_compose(prior, likelihood)
def evidence(self,
model: Object,
data: Object) -> float:
"""Compute model evidence."""
return self._compute_evidence(model, data)
Differential Geometric Connection
class DifferentialGeometricCategory(EnrichedCategory):
"""
Category enriched over differential manifolds.
Integration:
- [[differential_geometry|Differential Geometry]]
- [[lie_theory|Lie Theory]]
- [[symplectic_geometry|Symplectic Geometry]]
Mathematical Structure:
- Base category: Smooth manifolds and smooth maps
- Enriching category: Tangent bundles with vector operations
- Hom-objects: Spaces of smooth maps with smooth topology
"""
def __init__(self):
super().__init__(
base=SmoothManifoldCategory(),
enriching=TangentBundleCategory()
)
self.connection = LeviCivitaConnection()
self.metric = RiemannianMetric()
def parallel_transport(self,
vector: Morphism,
path: Morphism) -> Morphism:
"""Parallel transport along path using connection."""
return self.connection.transport(vector, path)
def geodesic(self,
point: Object,
vector: Morphism) -> Morphism:
"""Compute geodesic from point in direction."""
return self.connection.exponential_map(point, vector)
def curvature(self,
X: Morphism,
Y: Morphism) -> Morphism:
"""Compute Riemann curvature tensor."""
return self.connection.curvature_tensor(X, Y)
Algebraic Topology Connection
class HomologicalCategory(Category):
"""
Category for homological algebra and persistence.
Integration:
- [[algebraic_topology|Algebraic Topology]]
- [[homological_algebra|Homological Algebra]]
- [[persistent_homology|Persistent Homology]]
Mathematical Structure:
- Chain complexes as objects
- Chain maps as morphisms
- Homology functors
- Persistence diagrams
"""
def __init__(self):
super().__init__()
self.chain_complex = ChainComplex()
self.persistence = PersistenceDiagram()
def compute_homology(self,
complex: Object,
dimension: int) -> Object:
"""Compute n-th homology group."""
return self.chain_complex.homology(complex, dimension)
def persistence_diagram(self,
filtration: Morphism) -> Object:
"""Compute persistence diagram of filtration."""
return self.persistence.compute(filtration)
def spectral_sequence(self,
filtration: Morphism) -> Object:
"""Compute spectral sequence."""
return self.chain_complex.spectral_sequence(filtration)
Lie Theory Connection
class LieTheoreticCategory(MonoidalCategory):
"""
Category incorporating Lie theory structures.
Integration:
- [[lie_theory|Lie Theory]]
- [[representation_theory|Representation Theory]]
- [[harmonic_analysis|Harmonic Analysis]]
Mathematical Structure:
- Lie groups and algebras as objects
- Lie group homomorphisms as morphisms
- Adjoint representations
- Exponential maps
"""
def __init__(self):
super().__init__()
self.lie_algebra = LieAlgebra()
self.representations = RepresentationSpace()
def exponential_map(self,
X: Object) -> Morphism:
"""Compute Lie group exponential map."""
return self.lie_algebra.exponential(X)
def adjoint_representation(self,
g: Object) -> Morphism:
"""Compute adjoint representation."""
return self.representations.adjoint(g)
def killing_form(self,
X: Object,
Y: Object) -> float:
"""Compute Killing form."""
return self.lie_algebra.killing_form(X, Y)
Advanced Structures
Higher Categories
class HigherCategory:
"""
Implementation of higher categorical structures.
Mathematical Structure:
- n-morphisms (n > 1)
- Vertical and horizontal composition
- Interchange law
- Coherence conditions
Applications:
- Multi-level cognitive hierarchies
- Complex transformation networks
- Higher-order learning processes
"""
def __init__(self, dimension: int):
self.dimension = dimension
self.morphisms = {i: {} for i in range(dimension + 1)}
self.compositions = {i: {} for i in range(dimension + 1)}
def n_morphism(self,
level: int,
source: Object,
target: Object) -> Morphism:
"""Get n-morphism between objects."""
return self.morphisms[level].get((source, target))
def vertical_compose(self,
level: int,
f: Morphism,
g: Morphism) -> Morphism:
"""Vertical composition of n-morphisms."""
return self.compositions[level].get((f, g))
def horizontal_compose(self,
level: int,
f: Morphism,
g: Morphism) -> Morphism:
"""Horizontal composition with interchange law."""
return self._compute_horizontal_composition(level, f, g)
Enriched Functors
class EnrichedFunctor:
"""
Functors between enriched categories.
Mathematical Structure:
- Base functor between underlying categories
- Enriched structure preservation
- Strength conditions
- Coherence axioms
Applications:
- Structure-preserving mappings between cognitive models
- Enriched learning processes
- Multi-modal information processing
"""
def __init__(self,
source: EnrichedCategory,
target: EnrichedCategory):
self.source = source
self.target = target
self.base_functor = self._construct_base_functor()
self.strength = self._construct_strength()
def map_hom_object(self,
hom_AB: Object) -> Object:
"""Map hom-object preserving enriched structure."""
return self._compute_enriched_mapping(hom_AB)
def preserve_composition(self,
comp: Morphism) -> Morphism:
"""Preserve enriched composition."""
return self._compute_composition_preservation(comp)
def verify_coherence(self) -> bool:
"""Verify coherence conditions."""
return self._check_coherence_conditions()
Monoidal Transformations
class MonoidalTransformation:
"""
Natural transformations between monoidal functors.
Mathematical Structure:
- Component morphisms
- Monoidal structure preservation
- Coherence with tensor products
- Unit preservation
Applications:
- Transformations between cognitive architectures
- Learning model adaptations
- Structural modifications
"""
def __init__(self,
source: MonoidalFunctor,
target: MonoidalFunctor):
self.source = source
self.target = target
self.components = {}
self.monoidal_components = {}
def monoidal_component(self,
A: Object,
B: Object) -> Morphism:
"""Get monoidal component at objects."""
key = (A, B)
if key not in self.monoidal_components:
self.monoidal_components[key] = self._compute_monoidal_component(*key)
return self.monoidal_components[key]
def verify_coherence(self) -> bool:
"""Verify monoidal coherence conditions."""
return all([
self._check_tensor_coherence(),
self._check_unit_coherence(),
self._check_associativity_coherence()
])
Applications
Active Inference
- Belief Categories: State and observation spaces
- Update Functors: Inference processes
- Action Categories: Policy spaces
Learning Theory
- Parameter Categories: Model spaces
- Learning Functors: Training processes
- Gradient Categories: Optimization spaces
Neural Networks
- Layer Categories: Network architectures
- Training Functors: Learning algorithms
- Activation Categories: Nonlinearity spaces
Integration Points
Theory Integration
Implementation Integration
- ../../docs/guides/implementation_patterns
- ../../docs/api/api_documentation
- ../../docs/examples/usage_examples
References
- awodey_2010 - Category Theory
- baez_stay_2011 - Physics, Topology, Logic and Computation
- spivak_2014 - Category Theory for Scientists
- fong_spivak_2019 - An Invitation to Applied Category Theory