зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-30 12:46:04 +02:00
279 строки
7.9 KiB
Markdown
279 строки
7.9 KiB
Markdown
---
|
|
type: implementation
|
|
id: path_integral_implementation_001
|
|
created: 2024-02-05
|
|
modified: 2024-02-05
|
|
tags: [implementation, numerical-methods, path-integrals, active-inference]
|
|
aliases: [path-implementation, numerical-path-methods]
|
|
---
|
|
|
|
# Implementation Guide for Path Integral Methods
|
|
|
|
## Numerical Foundations
|
|
|
|
### Discretization Framework
|
|
```python
|
|
class PathDiscretizer:
|
|
"""Framework for path discretization schemes."""
|
|
|
|
def __init__(self, dt: float, scheme: str = 'symplectic'):
|
|
self.dt = dt
|
|
self.scheme = self._initialize_scheme(scheme)
|
|
|
|
def discretize_action(self,
|
|
lagrangian: Callable,
|
|
path: np.ndarray) -> float:
|
|
"""Discretize continuous action functional."""
|
|
discrete_points = self.scheme(path, self.dt)
|
|
return self.compute_discrete_action(lagrangian, discrete_points)
|
|
```
|
|
|
|
Links to:
|
|
- [[numerical_discretization]]
|
|
- [[finite_elements]]
|
|
- [[discrete_mechanics]]
|
|
|
|
### Stability Analysis
|
|
```python
|
|
def analyze_stability(scheme: Callable,
|
|
test_system: Callable,
|
|
params: Dict) -> Dict[str, float]:
|
|
"""Analyze numerical stability of discretization."""
|
|
return {
|
|
'local_error': compute_local_error(scheme, test_system),
|
|
'global_error': compute_global_error(scheme, test_system),
|
|
'energy_drift': compute_energy_conservation(scheme, test_system)
|
|
}
|
|
```
|
|
|
|
Links to:
|
|
- [[numerical_stability]]
|
|
- [[error_analysis]]
|
|
- [[conservation_laws]]
|
|
|
|
## Path Sampling Methods
|
|
|
|
### MCMC Implementation
|
|
```python
|
|
class PathMCMC:
|
|
"""Markov Chain Monte Carlo for path sampling."""
|
|
|
|
def __init__(self, action: Callable, temperature: float):
|
|
self.action = action
|
|
self.beta = 1.0 / temperature
|
|
|
|
def hamiltonian_mc(self,
|
|
initial_path: np.ndarray,
|
|
num_steps: int) -> List[np.ndarray]:
|
|
"""Hamiltonian Monte Carlo sampling."""
|
|
paths = []
|
|
current = initial_path
|
|
momentum = self.sample_momentum(current.shape)
|
|
|
|
for _ in range(num_steps):
|
|
# Leapfrog integration
|
|
next_path, next_momentum = self.leapfrog_step(
|
|
current, momentum)
|
|
|
|
# Metropolis acceptance
|
|
if self.accept_state(current, next_path,
|
|
momentum, next_momentum):
|
|
current = next_path
|
|
momentum = next_momentum
|
|
|
|
paths.append(current.copy())
|
|
|
|
return paths
|
|
```
|
|
|
|
Links to:
|
|
- [[hamiltonian_monte_carlo]]
|
|
- [[leapfrog_integration]]
|
|
- [[metropolis_hastings]]
|
|
|
|
### Variational Methods
|
|
```python
|
|
class VariationalPathSampler:
|
|
"""Variational inference for path distributions."""
|
|
|
|
def optimize_variational_parameters(self,
|
|
target_density: Callable,
|
|
variational_family: str,
|
|
**params) -> Dict:
|
|
"""Optimize variational approximation."""
|
|
elbo_history = []
|
|
current_params = self.initialize_parameters(variational_family)
|
|
|
|
while not self.converged(elbo_history):
|
|
# Compute ELBO gradient
|
|
grad = self.compute_elbo_gradient(
|
|
current_params, target_density)
|
|
|
|
# Update parameters
|
|
current_params = self.update_parameters(
|
|
current_params, grad, **params)
|
|
|
|
# Track progress
|
|
elbo = self.compute_elbo(
|
|
current_params, target_density)
|
|
elbo_history.append(elbo)
|
|
|
|
return current_params
|
|
```
|
|
|
|
Links to:
|
|
- [[variational_inference]]
|
|
- [[elbo_optimization]]
|
|
- [[natural_gradients]]
|
|
|
|
## Active Inference Specifics
|
|
|
|
### Free Energy Computation
|
|
```python
|
|
class PathFreeEnergy:
|
|
"""Compute free energy for path ensembles."""
|
|
|
|
def __init__(self, model_density: Callable):
|
|
self.model = model_density
|
|
|
|
def compute_path_free_energy(self,
|
|
paths: np.ndarray,
|
|
variational_density: Callable) -> float:
|
|
"""Compute free energy for path ensemble."""
|
|
# Energy term
|
|
energy = self.compute_path_energy(paths)
|
|
|
|
# Entropy term
|
|
entropy = self.compute_path_entropy(
|
|
paths, variational_density)
|
|
|
|
return energy - entropy
|
|
```
|
|
|
|
Links to:
|
|
- [[free_energy_principle]]
|
|
- [[path_entropy]]
|
|
- [[energy_functionals]]
|
|
|
|
### Policy Optimization
|
|
```python
|
|
class PathBasedPolicyOptimizer:
|
|
"""Optimize policies using path integral methods."""
|
|
|
|
def optimize_policy(self,
|
|
initial_state: np.ndarray,
|
|
horizon: int,
|
|
num_samples: int) -> Callable:
|
|
"""Optimize policy using path sampling."""
|
|
# Generate path ensemble
|
|
paths = self.sample_paths(
|
|
initial_state, horizon, num_samples)
|
|
|
|
# Compute path weights
|
|
weights = self.compute_path_weights(paths)
|
|
|
|
# Update policy
|
|
return self.update_policy_parameters(paths, weights)
|
|
```
|
|
|
|
Links to:
|
|
- [[policy_gradients]]
|
|
- [[path_integral_control]]
|
|
- [[importance_sampling]]
|
|
|
|
## Advanced Implementation Topics
|
|
|
|
### Parallel Computing
|
|
```python
|
|
class ParallelPathSampler:
|
|
"""Parallel implementation of path sampling."""
|
|
|
|
def parallel_sample_paths(self,
|
|
num_paths: int,
|
|
num_workers: int) -> np.ndarray:
|
|
"""Generate paths in parallel."""
|
|
with ProcessPoolExecutor(max_workers=num_workers) as executor:
|
|
paths = list(executor.map(
|
|
self.generate_single_path,
|
|
range(num_paths)))
|
|
return np.array(paths)
|
|
```
|
|
|
|
Links to:
|
|
- [[parallel_processing]]
|
|
- [[distributed_computing]]
|
|
- [[gpu_acceleration]]
|
|
|
|
### Adaptive Methods
|
|
```python
|
|
class AdaptivePathSampling:
|
|
"""Adaptive sampling methods for paths."""
|
|
|
|
def adapt_step_size(self,
|
|
acceptance_rate: float,
|
|
current_step: float) -> float:
|
|
"""Adapt integration step size."""
|
|
target_rate = 0.65 # Optimal acceptance rate
|
|
log_step = np.log(current_step)
|
|
return np.exp(log_step +
|
|
self.learning_rate *
|
|
(acceptance_rate - target_rate))
|
|
```
|
|
|
|
Links to:
|
|
- [[adaptive_mcmc]]
|
|
- [[dual_averaging]]
|
|
- [[step_size_adaptation]]
|
|
|
|
## Validation and Testing
|
|
|
|
### Unit Tests
|
|
```python
|
|
class PathIntegralTests:
|
|
"""Test suite for path integral implementations."""
|
|
|
|
def test_energy_conservation(self):
|
|
"""Test energy conservation in sampling."""
|
|
sampler = PathSampler(self.test_system)
|
|
paths = sampler.generate_paths(num_paths=1000)
|
|
energy_fluctuation = compute_energy_fluctuation(paths)
|
|
assert energy_fluctuation < self.tolerance
|
|
```
|
|
|
|
Links to:
|
|
- [[unit_testing]]
|
|
- [[integration_testing]]
|
|
- [[test_driven_development]]
|
|
|
|
### Performance Benchmarks
|
|
```python
|
|
class PathBenchmarks:
|
|
"""Benchmark suite for path methods."""
|
|
|
|
def benchmark_sampling(self,
|
|
methods: List[Callable],
|
|
system: Callable) -> Dict[str, float]:
|
|
"""Benchmark different sampling methods."""
|
|
results = {}
|
|
for method in methods:
|
|
start_time = time.time()
|
|
paths = method(system)
|
|
end_time = time.time()
|
|
|
|
results[method.__name__] = {
|
|
'time': end_time - start_time,
|
|
'efficiency': compute_sampling_efficiency(paths)
|
|
}
|
|
return results
|
|
```
|
|
|
|
Links to:
|
|
- [[performance_testing]]
|
|
- [[benchmarking]]
|
|
- [[profiling]]
|
|
|
|
## References
|
|
- [[neal_2011]] - MCMC Using Hamiltonian Dynamics
|
|
- [[girolami_2011]] - Riemann Manifold Langevin and Hamiltonian Monte Carlo
|
|
- [[hoffman_2014]] - The No-U-Turn Sampler
|
|
- [[betancourt_2017]] - A Conceptual Introduction to Hamiltonian Monte Carlo |