зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-30 12:46:04 +02:00
3.4 KiB
3.4 KiB
| title | type | status | created | tags | semantic_relations | |||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Unit Testing Guide | guide | draft | 2024-02-12 |
|
|
Unit Testing Guide
Overview
This guide provides comprehensive instructions for unit testing in the cognitive modeling framework. It covers best practices, testing patterns, and validation approaches.
Testing Philosophy
Core Principles
- Test behavior, not implementation
- One assertion per test
- Keep tests simple and readable
- Test edge cases and error conditions
- Maintain test independence
Test Types
-
Unit Tests
- Individual component testing
- Function-level validation
- Class behavior verification
-
Integration Tests
- Component interaction testing
- System integration validation
- End-to-end workflows
-
Property Tests
- Invariant verification
- Property-based testing
- Randomized input testing
Testing Structure
Directory Organization
tests/
├── unit/ # Unit tests
├── integration/ # Integration tests
├── property/ # Property-based tests
└── fixtures/ # Test data and fixtures
File Naming
- Test files:
test_*.py - Test classes:
Test* - Test methods:
test_*
Writing Tests
Basic Test Structure
def test_function_name():
# Arrange
input_data = prepare_test_data()
# Act
result = function_under_test(input_data)
# Assert
assert result == expected_output
Test Fixtures
@pytest.fixture
def sample_model():
"""Create a sample model for testing."""
return Model(params)
Parameterized Tests
@pytest.mark.parametrize("input,expected", [
(value1, result1),
(value2, result2)
])
def test_parameterized(input, expected):
assert function(input) == expected
Testing Patterns
Model Testing
- Test model initialization
- Verify state transitions
- Validate output distributions
- Check error handling
Algorithm Testing
- Test convergence properties
- Verify numerical stability
- Check optimization behavior
- Validate against known solutions
Data Structure Testing
- Test data integrity
- Verify structure constraints
- Check serialization
- Validate transformations
Best Practices
Code Coverage
- Aim for high test coverage
- Focus on critical paths
- Test edge cases
- Cover error conditions
Test Maintenance
- Keep tests up to date
- Refactor when needed
- Document test purpose
- Review test quality
Performance
- Use appropriate fixtures
- Minimize test duration
- Profile slow tests
- Optimize test data
Tools and Libraries
Testing Framework
- pytest for test execution
- pytest-cov for coverage
- pytest-benchmark for performance
- pytest-mock for mocking
Assertion Libraries
- pytest assertions
- numpy.testing
- pandas.testing
- torch.testing
Mocking
- unittest.mock
- pytest-mock
- responses for HTTP
- moto for AWS
Continuous Integration
CI Pipeline
- Run unit tests
- Check coverage
- Run integration tests
- Generate reports
Quality Gates
- Minimum coverage: 80%
- All tests must pass
- No critical issues
- Performance thresholds