cognitive/docs/guides/unit_testing.md
Daniel Ari Friedman 59a4bfb111 Updates
2025-02-12 10:51:38 -08:00

176 строки
3.4 KiB
Markdown

---
title: Unit Testing Guide
type: guide
status: draft
created: 2024-02-12
tags:
- testing
- development
- quality
semantic_relations:
- type: implements
links: [[ai_validation_framework]]
- type: relates
links:
- [[implementation_guides]]
- [[model_implementation]]
---
# Unit Testing Guide
## Overview
This guide provides comprehensive instructions for unit testing in the cognitive modeling framework. It covers best practices, testing patterns, and validation approaches.
## Testing Philosophy
### Core Principles
- Test behavior, not implementation
- One assertion per test
- Keep tests simple and readable
- Test edge cases and error conditions
- Maintain test independence
### Test Types
1. Unit Tests
- Individual component testing
- Function-level validation
- Class behavior verification
2. Integration Tests
- Component interaction testing
- System integration validation
- End-to-end workflows
3. Property Tests
- Invariant verification
- Property-based testing
- Randomized input testing
## Testing Structure
### Directory Organization
```
tests/
├── unit/ # Unit tests
├── integration/ # Integration tests
├── property/ # Property-based tests
└── fixtures/ # Test data and fixtures
```
### File Naming
- Test files: `test_*.py`
- Test classes: `Test*`
- Test methods: `test_*`
## Writing Tests
### Basic Test Structure
```python
def test_function_name():
# Arrange
input_data = prepare_test_data()
# Act
result = function_under_test(input_data)
# Assert
assert result == expected_output
```
### Test Fixtures
```python
@pytest.fixture
def sample_model():
"""Create a sample model for testing."""
return Model(params)
```
### Parameterized Tests
```python
@pytest.mark.parametrize("input,expected", [
(value1, result1),
(value2, result2)
])
def test_parameterized(input, expected):
assert function(input) == expected
```
## Testing Patterns
### Model Testing
- Test model initialization
- Verify state transitions
- Validate output distributions
- Check error handling
### Algorithm Testing
- Test convergence properties
- Verify numerical stability
- Check optimization behavior
- Validate against known solutions
### Data Structure Testing
- Test data integrity
- Verify structure constraints
- Check serialization
- Validate transformations
## Best Practices
### Code Coverage
- Aim for high test coverage
- Focus on critical paths
- Test edge cases
- Cover error conditions
### Test Maintenance
- Keep tests up to date
- Refactor when needed
- Document test purpose
- Review test quality
### Performance
- Use appropriate fixtures
- Minimize test duration
- Profile slow tests
- Optimize test data
## Tools and Libraries
### Testing Framework
- pytest for test execution
- pytest-cov for coverage
- pytest-benchmark for performance
- pytest-mock for mocking
### Assertion Libraries
- pytest assertions
- numpy.testing
- pandas.testing
- torch.testing
### Mocking
- unittest.mock
- pytest-mock
- responses for HTTP
- moto for AWS
## Continuous Integration
### CI Pipeline
1. Run unit tests
2. Check coverage
3. Run integration tests
4. Generate reports
### Quality Gates
- Minimum coverage: 80%
- All tests must pass
- No critical issues
- Performance thresholds
## Related Documentation
- [[ai_validation_framework]]
- [[implementation_guides]]
- [[model_implementation]]