зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-30 20:56:04 +02:00
175 строки
3.4 KiB
Markdown
175 строки
3.4 KiB
Markdown
---
|
|
title: Validation Framework
|
|
type: guide
|
|
status: draft
|
|
created: 2024-02-12
|
|
tags:
|
|
- validation
|
|
- quality
|
|
- testing
|
|
semantic_relations:
|
|
- type: implements
|
|
links: [[ai_validation_framework]]
|
|
- type: relates
|
|
links:
|
|
- [[unit_testing]]
|
|
- [[quality_metrics]]
|
|
---
|
|
|
|
# Validation Framework
|
|
|
|
## Overview
|
|
|
|
This guide outlines the validation framework used to ensure theoretical consistency, implementation correctness, and quality standards across the cognitive modeling system.
|
|
|
|
## Validation Layers
|
|
|
|
### 1. Theoretical Validation
|
|
- Mathematical consistency
|
|
- Theoretical soundness
|
|
- Formal proofs
|
|
- Constraint satisfaction
|
|
|
|
### 2. Implementation Validation
|
|
- Code correctness
|
|
- Algorithm implementation
|
|
- Numerical stability
|
|
- Performance optimization
|
|
|
|
### 3. Empirical Validation
|
|
- Experimental results
|
|
- Benchmark comparisons
|
|
- Real-world testing
|
|
- Performance metrics
|
|
|
|
## Validation Methods
|
|
|
|
### Mathematical Validation
|
|
|
|
```python
|
|
def validate_probability_distribution(distribution):
|
|
"""Validate probability distribution properties."""
|
|
# Check normalization
|
|
assert np.isclose(distribution.sum(), 1.0)
|
|
|
|
# Check non-negativity
|
|
assert np.all(distribution >= 0)
|
|
|
|
# Check numerical stability
|
|
assert np.all(np.isfinite(distribution))
|
|
```
|
|
|
|
### Implementation Validation
|
|
|
|
```python
|
|
def validate_model_implementation(model):
|
|
"""Validate model implementation."""
|
|
# Check interface compliance
|
|
validate_interface(model)
|
|
|
|
# Verify state consistency
|
|
validate_state(model)
|
|
|
|
# Test core functionality
|
|
validate_behavior(model)
|
|
```
|
|
|
|
### Empirical Validation
|
|
|
|
```python
|
|
def validate_model_performance(model, benchmark_data):
|
|
"""Validate model performance."""
|
|
# Run benchmark tests
|
|
results = run_benchmarks(model, benchmark_data)
|
|
|
|
# Compare against baselines
|
|
validate_metrics(results, benchmarks)
|
|
|
|
# Check performance criteria
|
|
validate_performance(results)
|
|
```
|
|
|
|
## Validation Workflow
|
|
|
|
### 1. Pre-implementation
|
|
- Review theoretical foundations
|
|
- Verify mathematical proofs
|
|
- Check assumptions
|
|
- Plan validation tests
|
|
|
|
### 2. During Implementation
|
|
- Unit testing
|
|
- Integration testing
|
|
- Property testing
|
|
- Performance profiling
|
|
|
|
### 3. Post-implementation
|
|
- System validation
|
|
- Benchmark testing
|
|
- Documentation review
|
|
- Code review
|
|
|
|
## Validation Tools
|
|
|
|
### Static Analysis
|
|
- Type checking
|
|
- Code linting
|
|
- Complexity analysis
|
|
- Dependency validation
|
|
|
|
### Dynamic Analysis
|
|
- Runtime monitoring
|
|
- Memory profiling
|
|
- Performance tracking
|
|
- Coverage analysis
|
|
|
|
### Quality Metrics
|
|
- Code quality
|
|
- Test coverage
|
|
- Documentation completeness
|
|
- Performance benchmarks
|
|
|
|
## Best Practices
|
|
|
|
### Documentation
|
|
- Document assumptions
|
|
- Specify constraints
|
|
- Detail validation methods
|
|
- Record test cases
|
|
|
|
### Testing
|
|
- Comprehensive test suite
|
|
- Edge case coverage
|
|
- Performance benchmarks
|
|
- Integration tests
|
|
|
|
### Review Process
|
|
- Code review
|
|
- Theory review
|
|
- Documentation review
|
|
- Performance review
|
|
|
|
## Validation Checklist
|
|
|
|
### Theory
|
|
- [ ] Mathematical consistency
|
|
- [ ] Theoretical soundness
|
|
- [ ] Constraint satisfaction
|
|
- [ ] Edge case handling
|
|
|
|
### Implementation
|
|
- [ ] Code correctness
|
|
- [ ] Algorithm accuracy
|
|
- [ ] Numerical stability
|
|
- [ ] Performance optimization
|
|
|
|
### Testing
|
|
- [ ] Unit tests
|
|
- [ ] Integration tests
|
|
- [ ] Benchmark tests
|
|
- [ ] Performance tests
|
|
|
|
## Related Documentation
|
|
- [[unit_testing]]
|
|
- [[quality_metrics]]
|
|
- [[ai_validation_framework]] |