cognitive/docs/guides/validation.md
Daniel Ari Friedman 59a4bfb111 Updates
2025-02-12 10:51:38 -08:00

175 строки
3.4 KiB
Markdown

---
title: Validation Framework
type: guide
status: draft
created: 2024-02-12
tags:
- validation
- quality
- testing
semantic_relations:
- type: implements
links: [[ai_validation_framework]]
- type: relates
links:
- [[unit_testing]]
- [[quality_metrics]]
---
# Validation Framework
## Overview
This guide outlines the validation framework used to ensure theoretical consistency, implementation correctness, and quality standards across the cognitive modeling system.
## Validation Layers
### 1. Theoretical Validation
- Mathematical consistency
- Theoretical soundness
- Formal proofs
- Constraint satisfaction
### 2. Implementation Validation
- Code correctness
- Algorithm implementation
- Numerical stability
- Performance optimization
### 3. Empirical Validation
- Experimental results
- Benchmark comparisons
- Real-world testing
- Performance metrics
## Validation Methods
### Mathematical Validation
```python
def validate_probability_distribution(distribution):
"""Validate probability distribution properties."""
# Check normalization
assert np.isclose(distribution.sum(), 1.0)
# Check non-negativity
assert np.all(distribution >= 0)
# Check numerical stability
assert np.all(np.isfinite(distribution))
```
### Implementation Validation
```python
def validate_model_implementation(model):
"""Validate model implementation."""
# Check interface compliance
validate_interface(model)
# Verify state consistency
validate_state(model)
# Test core functionality
validate_behavior(model)
```
### Empirical Validation
```python
def validate_model_performance(model, benchmark_data):
"""Validate model performance."""
# Run benchmark tests
results = run_benchmarks(model, benchmark_data)
# Compare against baselines
validate_metrics(results, benchmarks)
# Check performance criteria
validate_performance(results)
```
## Validation Workflow
### 1. Pre-implementation
- Review theoretical foundations
- Verify mathematical proofs
- Check assumptions
- Plan validation tests
### 2. During Implementation
- Unit testing
- Integration testing
- Property testing
- Performance profiling
### 3. Post-implementation
- System validation
- Benchmark testing
- Documentation review
- Code review
## Validation Tools
### Static Analysis
- Type checking
- Code linting
- Complexity analysis
- Dependency validation
### Dynamic Analysis
- Runtime monitoring
- Memory profiling
- Performance tracking
- Coverage analysis
### Quality Metrics
- Code quality
- Test coverage
- Documentation completeness
- Performance benchmarks
## Best Practices
### Documentation
- Document assumptions
- Specify constraints
- Detail validation methods
- Record test cases
### Testing
- Comprehensive test suite
- Edge case coverage
- Performance benchmarks
- Integration tests
### Review Process
- Code review
- Theory review
- Documentation review
- Performance review
## Validation Checklist
### Theory
- [ ] Mathematical consistency
- [ ] Theoretical soundness
- [ ] Constraint satisfaction
- [ ] Edge case handling
### Implementation
- [ ] Code correctness
- [ ] Algorithm accuracy
- [ ] Numerical stability
- [ ] Performance optimization
### Testing
- [ ] Unit tests
- [ ] Integration tests
- [ ] Benchmark tests
- [ ] Performance tests
## Related Documentation
- [[unit_testing]]
- [[quality_metrics]]
- [[ai_validation_framework]]