зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-30 20:56:04 +02:00
392 строки
14 KiB
Markdown
392 строки
14 KiB
Markdown
# Implementation Patterns Guide
|
|
|
|
---
|
|
title: Implementation Patterns Guide
|
|
type: guide
|
|
status: stable
|
|
created: 2024-02-06
|
|
tags:
|
|
- implementation
|
|
- patterns
|
|
- design
|
|
- architecture
|
|
semantic_relations:
|
|
- type: implements
|
|
links:
|
|
- [[knowledge_base/cognitive/active_inference|Active Inference]]
|
|
- [[knowledge_base/cognitive/free_energy_principle|Free Energy Principle]]
|
|
- type: relates
|
|
links:
|
|
- [[docs/api/api_reference|API Reference]]
|
|
- [[docs/concepts/theoretical_foundations|Theoretical Foundations]]
|
|
---
|
|
|
|
## Overview
|
|
|
|
This guide outlines implementation patterns for translating cognitive science theory into practical code. While the [[knowledge_base/cognitive/cognitive_science|knowledge base]] provides theoretical foundations, this guide focuses on concrete implementation strategies.
|
|
|
|
## Core Implementation Patterns
|
|
|
|
### Active Inference Implementation
|
|
```python
|
|
# @active_inference_pattern
|
|
class ActiveInferencePattern:
|
|
"""
|
|
Core implementation pattern for Active Inference.
|
|
|
|
Theory: [[knowledge_base/cognitive/active_inference|Active Inference]]
|
|
API: [[docs/api/api_reference#active-inference-framework|API Reference]]
|
|
"""
|
|
def __init__(self):
|
|
self.belief_updater = BeliefUpdater() # [[belief_updating]]
|
|
self.policy_selector = PolicySelector() # [[action_selection]]
|
|
self.state_estimator = StateEstimator() # [[state_estimation]]
|
|
|
|
def cycle(self, observation: Observation) -> Action:
|
|
"""
|
|
Single cycle of perception-action.
|
|
|
|
Theory: [[knowledge_base/cognitive/active_inference#perception-action-cycle|Perception-Action Cycle]]
|
|
"""
|
|
# Update beliefs
|
|
beliefs = self.belief_updater.update(observation)
|
|
|
|
# Select policy
|
|
policy = self.policy_selector.select(beliefs)
|
|
|
|
# Execute action
|
|
action = policy.get_action()
|
|
|
|
return action
|
|
```
|
|
|
|
### Belief Updating Pattern
|
|
```python
|
|
# @belief_updating_pattern
|
|
class BeliefUpdatePattern:
|
|
"""
|
|
Implementation pattern for belief updating.
|
|
|
|
Theory:
|
|
- [[knowledge_base/cognitive/predictive_processing#belief-updating|Belief Updating]]
|
|
- [[knowledge_base/cognitive/free_energy_principle#variational-inference|Variational Inference]]
|
|
Mathematics:
|
|
- [[knowledge_base/mathematics/variational_methods|Variational Methods]]
|
|
- [[knowledge_base/mathematics/information_geometry|Information Geometry]]
|
|
API: [[docs/api/api_reference#belief-updating-system|API Reference]]
|
|
"""
|
|
def update_beliefs(self,
|
|
prior: Distribution,
|
|
likelihood: Distribution) -> Distribution:
|
|
"""
|
|
Update beliefs using variational inference.
|
|
|
|
Theory:
|
|
- [[knowledge_base/cognitive/free_energy_principle#variational-inference|Variational Inference]]
|
|
- [[knowledge_base/mathematics/kullback_leibler|KL Divergence]]
|
|
Implementation:
|
|
- [[docs/api/matrix_operations#gradient-descent|Gradient Descent]]
|
|
- [[docs/api/optimization_methods#natural-gradients|Natural Gradients]]
|
|
"""
|
|
# Compute posterior using variational methods
|
|
posterior = self._compute_posterior(prior, likelihood)
|
|
|
|
# Minimize free energy using natural gradients
|
|
optimized = self._minimize_free_energy(posterior)
|
|
|
|
return optimized
|
|
|
|
def _compute_posterior(self, prior: Distribution, likelihood: Distribution) -> Distribution:
|
|
"""
|
|
Compute posterior distribution.
|
|
|
|
Mathematics:
|
|
- [[knowledge_base/mathematics/bayes_theorem|Bayes Theorem]]
|
|
- [[knowledge_base/mathematics/exponential_families|Exponential Families]]
|
|
Implementation:
|
|
- [[docs/api/probability_utils#distribution-ops|Distribution Operations]]
|
|
"""
|
|
pass
|
|
|
|
def _minimize_free_energy(self, posterior: Distribution) -> Distribution:
|
|
"""
|
|
Minimize variational free energy.
|
|
|
|
Mathematics:
|
|
- [[knowledge_base/mathematics/variational_calculus|Variational Calculus]]
|
|
- [[knowledge_base/mathematics/optimization_theory|Optimization Theory]]
|
|
Implementation:
|
|
- [[docs/api/optimization_methods#variational-optimization|Variational Optimization]]
|
|
"""
|
|
pass
|
|
```
|
|
|
|
### Policy Selection Pattern
|
|
```python
|
|
# @policy_selection_pattern
|
|
class PolicySelectionPattern:
|
|
"""
|
|
Implementation pattern for policy selection.
|
|
|
|
Theory:
|
|
- [[knowledge_base/cognitive/active_inference#policy-selection|Policy Selection]]
|
|
- [[knowledge_base/cognitive/free_energy_principle#expected-free-energy|Expected Free Energy]]
|
|
Mathematics:
|
|
- [[knowledge_base/mathematics/information_theory|Information Theory]]
|
|
- [[knowledge_base/mathematics/decision_theory|Decision Theory]]
|
|
API: [[docs/api/api_reference#policy-selection|Policy Selection API]]
|
|
"""
|
|
def select_policy(self,
|
|
beliefs: BeliefState,
|
|
policies: List[Policy]) -> Policy:
|
|
"""
|
|
Select optimal policy using expected free energy.
|
|
|
|
Theory:
|
|
- [[knowledge_base/cognitive/free_energy_principle#expected-free-energy|Expected Free Energy]]
|
|
- [[knowledge_base/cognitive/active_inference#action-selection|Action Selection]]
|
|
Mathematics:
|
|
- [[knowledge_base/mathematics/expected_utility|Expected Utility]]
|
|
- [[knowledge_base/mathematics/information_gain|Information Gain]]
|
|
Implementation:
|
|
- [[docs/api/optimization_methods#policy-optimization|Policy Optimization]]
|
|
"""
|
|
# Generate and evaluate policies
|
|
policies = self._generate_policies()
|
|
policy_values = self._evaluate_policies(policies, beliefs)
|
|
|
|
# Select optimal policy using softmax
|
|
optimal_policy = self._select_optimal_policy(policy_values)
|
|
|
|
return optimal_policy
|
|
|
|
def _evaluate_policies(self,
|
|
policies: List[Policy],
|
|
beliefs: BeliefState) -> np.ndarray:
|
|
"""
|
|
Evaluate policies using expected free energy.
|
|
|
|
Mathematics:
|
|
- [[knowledge_base/mathematics/expected_free_energy|Expected Free Energy]]
|
|
- [[knowledge_base/mathematics/path_integral|Path Integral]]
|
|
Implementation:
|
|
- [[docs/api/matrix_operations#policy-evaluation|Policy Evaluation]]
|
|
"""
|
|
pass
|
|
|
|
def _select_optimal_policy(self,
|
|
policy_values: np.ndarray) -> Policy:
|
|
"""
|
|
Select optimal policy using softmax.
|
|
|
|
Mathematics:
|
|
- [[knowledge_base/mathematics/softmax|Softmax Function]]
|
|
- [[knowledge_base/mathematics/temperature_scaling|Temperature Scaling]]
|
|
Implementation:
|
|
- [[docs/api/probability_utils#softmax|Softmax Implementation]]
|
|
"""
|
|
pass
|
|
```
|
|
|
|
### Perception Implementation Pattern
|
|
```python
|
|
# @perception_pattern
|
|
class PerceptionPattern:
|
|
"""
|
|
Implementation pattern for perceptual processing.
|
|
|
|
Theory:
|
|
- [[knowledge_base/cognitive/predictive_processing#perception|Predictive Processing]]
|
|
- [[knowledge_base/cognitive/free_energy_principle#perceptual-inference|Perceptual Inference]]
|
|
Mathematics:
|
|
- [[knowledge_base/mathematics/hierarchical_models|Hierarchical Models]]
|
|
- [[knowledge_base/mathematics/message_passing|Message Passing]]
|
|
API: [[docs/api/api_reference#perception-system|Perception API]]
|
|
"""
|
|
def process_input(self,
|
|
sensory_input: Input,
|
|
prior_beliefs: BeliefState) -> Observation:
|
|
"""
|
|
Process sensory input using predictive processing.
|
|
|
|
Theory:
|
|
- [[knowledge_base/cognitive/predictive_processing#sensory-processing|Sensory Processing]]
|
|
- [[knowledge_base/cognitive/active_inference#perception|Active Inference Perception]]
|
|
Mathematics:
|
|
- [[knowledge_base/mathematics/prediction_error|Prediction Error]]
|
|
- [[knowledge_base/mathematics/precision_weighting|Precision Weighting]]
|
|
Implementation:
|
|
- [[docs/api/matrix_operations#error-computation|Error Computation]]
|
|
- [[docs/api/probability_utils#precision-scaling|Precision Scaling]]
|
|
"""
|
|
# Compute prediction errors
|
|
prediction_errors = self._compute_prediction_errors(
|
|
sensory_input, prior_beliefs
|
|
)
|
|
|
|
# Weight by precision
|
|
weighted_errors = self._weight_by_precision(prediction_errors)
|
|
|
|
# Update beliefs
|
|
updated_beliefs = self._update_beliefs(weighted_errors)
|
|
|
|
return updated_beliefs
|
|
|
|
def _compute_prediction_errors(self,
|
|
sensory_input: Input,
|
|
predictions: Predictions) -> PredictionErrors:
|
|
"""
|
|
Compute hierarchical prediction errors.
|
|
|
|
Mathematics:
|
|
- [[knowledge_base/mathematics/error_propagation|Error Propagation]]
|
|
- [[knowledge_base/mathematics/hierarchical_inference|Hierarchical Inference]]
|
|
Implementation:
|
|
- [[docs/api/matrix_operations#error-propagation|Error Propagation]]
|
|
"""
|
|
pass
|
|
|
|
def _weight_by_precision(self,
|
|
prediction_errors: PredictionErrors) -> WeightedErrors:
|
|
"""
|
|
Weight prediction errors by precision.
|
|
|
|
Mathematics:
|
|
- [[knowledge_base/mathematics/precision_matrices|Precision Matrices]]
|
|
- [[knowledge_base/mathematics/uncertainty_propagation|Uncertainty Propagation]]
|
|
Implementation:
|
|
- [[docs/api/matrix_operations#precision-weighting|Precision Weighting]]
|
|
"""
|
|
pass
|
|
```
|
|
|
|
## Design Patterns
|
|
|
|
### 1. Model-View-Controller
|
|
```python
|
|
# @mvc_pattern
|
|
class ModelPattern:
|
|
"""
|
|
MVC pattern for cognitive models.
|
|
|
|
Theory: [[knowledge_base/cognitive/cognitive_phenomena#model-architecture|Model Architecture]]
|
|
"""
|
|
def __init__(self):
|
|
self.model = GenerativeModel() # Internal model
|
|
self.view = ModelView() # Visualization
|
|
self.controller = ModelController() # Control logic
|
|
```
|
|
|
|
### 2. Observer Pattern
|
|
```python
|
|
# @observer_pattern
|
|
class BeliefObserver:
|
|
"""
|
|
Observer pattern for belief monitoring.
|
|
|
|
Theory: [[knowledge_base/cognitive/predictive_processing#belief-monitoring|Belief Monitoring]]
|
|
"""
|
|
def update(self, beliefs: BeliefState):
|
|
"""Update on belief changes."""
|
|
self._log_beliefs(beliefs)
|
|
self._visualize_beliefs(beliefs)
|
|
```
|
|
|
|
## Integration Patterns
|
|
|
|
### 1. Component Integration
|
|
```python
|
|
# @integration_pattern
|
|
class IntegrationPattern:
|
|
"""
|
|
Pattern for component integration.
|
|
|
|
See [[docs/guides/system_integration|System Integration]]
|
|
"""
|
|
def __init__(self):
|
|
self.belief_component = BeliefComponent()
|
|
self.action_component = ActionComponent()
|
|
self.perception_component = PerceptionComponent()
|
|
```
|
|
|
|
### 2. Pipeline Pattern
|
|
```python
|
|
# @pipeline_pattern
|
|
class ProcessingPipeline:
|
|
"""
|
|
Pattern for information processing pipeline.
|
|
|
|
Theory: [[knowledge_base/cognitive/predictive_processing#processing-hierarchy|Processing Hierarchy]]
|
|
"""
|
|
def process(self, input_data: Data) -> Result:
|
|
"""Process data through pipeline stages."""
|
|
preprocessed = self._preprocess(input_data)
|
|
processed = self._process(preprocessed)
|
|
postprocessed = self._postprocess(processed)
|
|
return postprocessed
|
|
```
|
|
|
|
## Validation Patterns
|
|
|
|
### 1. Model Validation
|
|
```python
|
|
# @validation_pattern
|
|
class ValidationPattern:
|
|
"""
|
|
Pattern for model validation.
|
|
|
|
See [[docs/guides/validation_guide|Validation Guide]]
|
|
"""
|
|
def validate_model(self, model: Model) -> ValidationResult:
|
|
"""Validate model components and behavior."""
|
|
structure_valid = self._validate_structure(model)
|
|
behavior_valid = self._validate_behavior(model)
|
|
performance_valid = self._validate_performance(model)
|
|
return ValidationResult(structure_valid, behavior_valid, performance_valid)
|
|
```
|
|
|
|
### 2. Testing Pattern
|
|
```python
|
|
# @testing_pattern
|
|
class TestingPattern:
|
|
"""
|
|
Pattern for comprehensive testing.
|
|
|
|
See [[docs/guides/testing_guide|Testing Guide]]
|
|
"""
|
|
def test_suite(self) -> TestResults:
|
|
"""Run complete test suite."""
|
|
unit_results = self._run_unit_tests()
|
|
integration_results = self._run_integration_tests()
|
|
system_results = self._run_system_tests()
|
|
return TestResults(unit_results, integration_results, system_results)
|
|
```
|
|
|
|
## Best Practices
|
|
|
|
### 1. Code Organization
|
|
- Follow [[docs/guides/code_organization|Code Organization Guide]]
|
|
- Use [[docs/guides/naming_conventions|Naming Conventions]]
|
|
- Implement [[docs/guides/documentation_standards|Documentation Standards]]
|
|
|
|
### 2. Performance Optimization
|
|
- Follow [[docs/guides/performance_optimization|Optimization Guide]]
|
|
- Use [[docs/guides/profiling_guide|Profiling Guide]]
|
|
- Monitor [[docs/guides/performance_metrics|Performance Metrics]]
|
|
|
|
### 3. Quality Assurance
|
|
- Implement [[docs/guides/testing_guide|Testing Guidelines]]
|
|
- Follow [[docs/guides/code_review|Code Review Process]]
|
|
- Use [[docs/guides/validation_framework|Validation Framework]]
|
|
|
|
## Related Documentation
|
|
- [[knowledge_base/cognitive/cognitive_science|Cognitive Science Theory]]
|
|
- [[docs/api/api_reference|API Reference]]
|
|
- [[docs/guides/system_integration|System Integration]]
|
|
- [[docs/guides/validation_guide|Validation Guide]]
|
|
|
|
## References
|
|
- [[knowledge_base/cognitive/active_inference|Active Inference]]
|
|
- [[knowledge_base/cognitive/free_energy_principle|Free Energy Principle]]
|
|
- [[knowledge_base/cognitive/predictive_processing|Predictive Processing]]
|
|
- [[docs/concepts/theoretical_foundations|Theoretical Foundations]] |