зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-30 12:46:04 +02:00
7.5 KiB
7.5 KiB
| title | type | status | created | complexity | processing_priority | tags | semantic_relations | |||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Active Inference in Cognitive Science Learning Path | learning_path | stable | 2024-03-15 | advanced | 1 |
|
|
Active Inference in Cognitive Science Learning Path
Overview
This specialized path focuses on applying Active Inference to understand cognitive processes, behavior, and mental phenomena. It integrates psychological theory with computational modeling.
Prerequisites
1. Cognitive Science Foundations (4 weeks)
-
Cognitive Psychology
- Perception
- Attention
- Memory
- Decision making
-
Behavioral Science
- Learning theory
- Motivation
- Emotion
- Social cognition
-
Experimental Methods
- Research design
- Data collection
- Statistical analysis
- Behavioral measures
-
Computational Theory
- Information processing
- Mental representations
- Cognitive architectures
- Neural computation
2. Technical Skills (2 weeks)
- Research Tools
- Python/R
- Statistical packages
- Experimental software
- Data visualization
Core Learning Path
1. Cognitive Modeling (4 weeks)
Week 1-2: Mental State Inference
class CognitiveStateEstimator:
def __init__(self,
belief_dim: int,
observation_dim: int):
"""Initialize cognitive state estimator."""
self.belief_model = BeliefUpdateModel(belief_dim)
self.obs_model = ObservationModel(belief_dim, observation_dim)
self.beliefs = torch.zeros(belief_dim)
def update_beliefs(self,
observation: torch.Tensor) -> torch.Tensor:
"""Update beliefs based on observation."""
# Generate prediction
pred_obs = self.obs_model(self.beliefs)
# Compute prediction error
error = observation - pred_obs
# Update beliefs
self.beliefs = self.belief_model.update(self.beliefs, error)
return self.beliefs
Week 3-4: Action Selection
class BehavioralController:
def __init__(self,
action_space: int,
goal_space: int):
"""Initialize behavioral controller."""
self.policy = PolicyNetwork(action_space)
self.value = ValueNetwork(goal_space)
def select_action(self,
beliefs: torch.Tensor,
goals: torch.Tensor) -> torch.Tensor:
"""Select action using active inference."""
# Generate policies
policies = self.policy.generate_policies(beliefs)
# Evaluate expected free energy
G = torch.zeros(len(policies))
for i, pi in enumerate(policies):
future_beliefs = self.simulate_policy(beliefs, pi)
G[i] = self.compute_expected_free_energy(
future_beliefs, goals
)
# Select optimal policy
best_policy = policies[torch.argmin(G)]
return best_policy[0]
2. Cognitive Domains (6 weeks)
Week 1-2: Perceptual Processing
- Sensory Integration
- Feature Extraction
- Pattern Recognition
- Attention Allocation
Week 3-4: Decision Making
- Value Computation
- Risk Assessment
- Temporal Planning
- Social Decision Making
Week 5-6: Learning and Memory
- Skill Acquisition
- Knowledge Formation
- Memory Consolidation
- Habit Learning
3. Applications (4 weeks)
Week 1-2: Behavioral Tasks
class CognitiveBehaviorTask:
def __init__(self,
task_type: str,
difficulty: float):
"""Initialize cognitive task."""
self.type = task_type
self.difficulty = difficulty
self.stimuli = self.generate_stimuli()
def run_trial(self,
agent: CognitiveAgent) -> Dict[str, Any]:
"""Run single trial of task."""
# Present stimulus
observation = self.present_stimulus()
# Get agent response
response = agent.process_stimulus(observation)
# Evaluate performance
results = self.evaluate_response(response)
return results
Week 3-4: Clinical Applications
- Psychiatric Disorders
- Behavioral Therapy
- Cognitive Training
- Intervention Design
4. Advanced Topics (4 weeks)
Week 1-2: Social Cognition
class SocialCognitionModel:
def __init__(self,
n_agents: int,
social_dim: int):
"""Initialize social cognition model."""
self.agents = [CognitiveAgent() for _ in range(n_agents)]
self.social_space = SocialSpace(social_dim)
def simulate_interaction(self,
context: Dict[str, Any]) -> List[torch.Tensor]:
"""Simulate social interaction."""
# Initialize interaction
states = []
for agent in self.agents:
# Update beliefs about others
social_obs = self.social_space.get_observations(agent)
agent.update_social_beliefs(social_obs)
# Generate social action
action = agent.select_social_action(context)
states.append(action)
return states
Week 3-4: Metacognition
- Self-monitoring
- Confidence Estimation
- Strategy Selection
- Learning to Learn
Projects
Cognitive Projects
-
Perceptual Tasks
- Visual Search
- Pattern Recognition
- Category Learning
- Attention Tasks
-
Decision Tasks
- Value-based Choice
- Risk Assessment
- Social Dilemmas
- Sequential Planning
Clinical Projects
-
Disorder Modeling
- Anxiety
- Depression
- OCD
- ADHD
-
Intervention Design
- Cognitive Training
- Behavioral Therapy
- Treatment Planning
- Outcome Prediction
Assessment
Knowledge Assessment
-
Theoretical Understanding
- Cognitive Processes
- Behavioral Principles
- Clinical Applications
- Research Methods
-
Practical Skills
- Experimental Design
- Data Analysis
- Model Implementation
- Result Interpretation
Final Projects
-
Research Project
- Theory Development
- Experimental Design
- Data Collection
- Analysis
-
Clinical Application
- Disorder Modeling
- Treatment Design
- Validation Study
- Outcome Assessment
Resources
Academic Resources
-
Research Papers
- Theoretical Papers
- Empirical Studies
- Review Articles
- Clinical Studies
-
Books
- Cognitive Science
- Computational Modeling
- Clinical Psychology
- Research Methods
Technical Resources
-
Software Tools
- Experimental Software
- Analysis Packages
- Modeling Tools
- Visualization Libraries
-
Data Resources
- Behavioral Datasets
- Clinical Data
- Model Benchmarks
- Analysis Scripts