зеркало из
				https://github.com/docxology/cognitive.git
				synced 2025-10-30 20:56:04 +02:00 
			
		
		
		
	
		
			
				
	
	
	
		
			7.7 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	
			7.7 KiB
		
	
	
	
	
	
	
	
| title | type | status | created | complexity | processing_priority | tags | semantic_relations | ||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Active Inference Learning Path | learning_path | stable | 2024-03-15 | advanced | 1 | 
 | 
 | 
Active Inference Learning Path
Overview
This learning path provides a comprehensive guide to understanding and implementing Active Inference, from mathematical foundations to practical applications. Active Inference is a unifying framework for understanding perception, learning, and action in biological and artificial systems.
Prerequisites
1. Mathematics (4 weeks)
- 
probability_theory_learning_path - Probability spaces
- Random variables
- Conditional probability
- Bayesian inference
 
- 
information_theory_learning_path - Entropy
- KL divergence
- Mutual information
- Free energy
 
- 
optimization_theory_learning_path - Variational methods
- Gradient descent
- Lagrange multipliers
- Optimal control
 
- 
stochastic_processes_learning_path - Markov processes
- Diffusion processes
- Stochastic differential equations
- Path integrals
 
2. Programming (2 weeks)
- 
Python Fundamentals - NumPy/SciPy
- PyTorch/JAX
- Object-oriented programming
- Scientific computing
 
- 
Software Engineering - Version control
- Testing
- Documentation
- Best practices
 
Core Learning Path
1. Theoretical Foundations (4 weeks)
Week 1-2: Free Energy Principle
- Variational Free Energy
def compute_free_energy(q_dist, p_dist, obs): """Compute variational free energy.""" expected_log_likelihood = compute_expected_ll(q_dist, p_dist, obs) kl_divergence = compute_kl(q_dist, p_dist) return -expected_log_likelihood + kl_divergence
- Markov Blankets
- Self-organization
- Information Geometry
Week 3-4: Active Inference
- Expected Free Energy
def compute_expected_free_energy(policy, model): """Compute expected free energy for policy.""" ambiguity = compute_ambiguity(policy, model) risk = compute_risk(policy, model) return ambiguity + risk
- Policy Selection
- Precision Engineering
- Message Passing
2. Implementation (6 weeks)
Week 1-2: Core Components
- Generative Models
class GenerativeModel: def __init__(self, hidden_dims: List[int], obs_dim: int): """Initialize generative model.""" self.hidden_states = [ torch.zeros(dim) for dim in hidden_dims ] self.obs_model = ObservationModel(hidden_dims[-1], obs_dim) self.trans_model = TransitionModel(hidden_dims) def generate(self, policy: torch.Tensor) -> torch.Tensor: """Generate observations under policy.""" states = self.propagate_states(policy) return self.obs_model(states)
- Variational Inference
- Policy Networks
- Precision Parameters
Week 3-4: Agent Implementation
- Perception
class ActiveInferenceAgent: def __init__(self, model: GenerativeModel, learning_rate: float = 0.01): """Initialize active inference agent.""" self.model = model self.lr = learning_rate self.beliefs = initialize_beliefs() def infer_states(self, obs: torch.Tensor) -> torch.Tensor: """Perform state inference.""" for _ in range(self.inference_steps): pred_error = self.compute_prediction_error(obs) self.update_beliefs(pred_error) return self.beliefs
- Action Selection
- Learning
- Memory
Week 5-6: Advanced Features
- Hierarchical Models
- Active Learning
- Meta-learning
- Adaptive Behavior
3. Applications (4 weeks)
Week 1-2: Cognitive Tasks
- Perception Tasks
class PerceptionTask: def __init__(self, stimuli: torch.Tensor, categories: torch.Tensor): """Initialize perception task.""" self.stimuli = stimuli self.categories = categories def evaluate(self, agent: ActiveInferenceAgent) -> Dict[str, float]: """Evaluate agent performance.""" predictions = [] for stimulus in self.stimuli: belief = agent.infer_states(stimulus) pred = agent.model.predict_category(belief) predictions.append(pred) return compute_metrics(predictions, self.categories)
- Decision Making
- Motor Control
- Learning Tasks
Week 3-4: Real-world Applications
- Robotics
- Neural Data Analysis
- Clinical Applications
- Social Systems
4. Advanced Topics (4 weeks)
Week 1-2: Theoretical Extensions
- Non-equilibrium Physics
- Information Geometry
- Quantum Extensions
- Continuous Time
Week 3-4: Research Frontiers
- Mixed Models
- Group Behavior
- Development
- Consciousness
Projects
Beginner Projects
- 
Simple Perception - Binary classification
- Feature extraction
- Belief updating
- Performance analysis
 
- 
Basic Control - Pendulum balance
- Target reaching
- Simple navigation
- Error correction
 
Intermediate Projects
- 
Cognitive Tasks - Visual recognition
- Decision making
- Sequence learning
- Working memory
 
- 
Robotic Control - Arm control
- Object manipulation
- Path planning
- Multi-joint coordination
 
Advanced Projects
- 
Complex Cognition - Meta-learning
- Hierarchical control
- Active exploration
- Social interaction
 
- 
Real-world Applications - Medical diagnosis
- Brain-machine interfaces
- Autonomous systems
- Clinical interventions
 
Resources
Reading Materials
- 
Core Papers - Original formulations
- Key extensions
- Review papers
- Applications
 
- 
Books - Mathematical foundations
- Cognitive science
- Machine learning
- Neuroscience
 
Software Tools
- 
Libraries - PyAI (Active Inference)
- Torch/JAX implementations
- Simulation environments
- Analysis tools
 
- 
Environments - OpenAI Gym
- MuJoCo
- Custom environments
- Real-world interfaces
 
Assessment
Knowledge Checks
- 
Theoretical Understanding - Mathematical derivations
- Conceptual relationships
- Framework applications
- Design principles
 
- 
Implementation Skills - Code review
- Performance analysis
- Debugging exercises
- Optimization tasks
 
Final Projects
- 
Research Implementation - Novel contribution
- Theoretical extension
- Empirical validation
- Documentation
 
- 
Practical Application - Real-world problem
- Solution design
- Performance evaluation
- Impact assessment
 
Next Steps
Advanced Paths
- predictive_processing_learning_path
- cognitive_architecture_learning_path
- free_energy_principle_learning_path
