cognitive/docs/guides/learning_paths/predictive_processing.md
Daniel Ari Friedman 59a4bfb111 Updates
2025-02-12 10:51:38 -08:00

6.3 KiB

title type status created tags semantic_relations
Predictive Processing Learning Path learning_path stable 2024-02-12
learning-path
predictive-processing
guide
type links
implements
../documentation_standards
type links
relates
../../knowledge_base/cognitive/predictive_processing
active_inference_learning_path

Predictive Processing Learning Path

Overview

This learning path guides you through understanding and implementing predictive processing principles in cognitive modeling.

Prerequisites

Mathematics

  1. knowledge_base/mathematics/probability_theory

    • Conditional probability
    • Bayesian inference
    • Probabilistic graphical models
  2. knowledge_base/mathematics/information_theory

    • Entropy
    • Mutual information
    • KL divergence
  3. knowledge_base/mathematics/optimization

    • Gradient descent
    • Error minimization
    • Loss functions

Programming

  1. Python Fundamentals

    • NumPy/SciPy
    • PyTorch/TensorFlow
    • Scientific computing
  2. Software Engineering

    • Object-oriented programming
    • Testing frameworks
    • Version control

Learning Path

1. Theoretical Foundations

Week 1: Core Concepts

  1. knowledge_base/cognitive/predictive_coding

    • Neural basis
    • Hierarchical processing
    • Error minimization
  2. knowledge_base/cognitive/hierarchical_inference

    • Layer organization
    • Information flow
    • Prediction errors

Week 2: Advanced Theory

  1. knowledge_base/cognitive/precision_weighting

    • Uncertainty estimation
    • Attention mechanisms
    • Dynamic control
  2. knowledge_base/cognitive/temporal_prediction

    • Time series prediction
    • Sequence learning
    • Dynamic models

2. Implementation Basics

Week 3: Basic Implementation

  1. docs/guides/implementation/predictive_network

    • Network architecture
    • Layer implementation
    • Error computation
  2. docs/guides/implementation/error_propagation

    • Forward predictions
    • Backward errors
    • Update mechanisms

Week 4: Core Mechanisms

  1. docs/guides/implementation/precision_mechanisms

    • Precision estimation
    • Attention control
    • Uncertainty handling
  2. docs/guides/implementation/temporal_models

    • Sequence prediction
    • Time series handling
    • Dynamic updating

3. Advanced Applications

Week 5: Complex Systems

  1. docs/guides/implementation/hierarchical_systems

    • Multi-layer networks
    • Deep architectures
    • Information integration
  2. docs/guides/implementation/multimodal_processing

    • Sensory integration
    • Cross-modal prediction
    • Feature binding

Week 6: Real-world Applications

  1. docs/guides/implementation/perception_systems

    • Visual processing
    • Auditory analysis
    • Sensory integration
  2. docs/guides/implementation/cognitive_tasks

    • Decision making
    • Learning tasks
    • Memory systems

4. Research Topics

Week 7: Current Research

  1. docs/guides/research/current_developments

    • Latest findings
    • Research directions
    • Open questions
  2. docs/guides/research/advanced_architectures

    • Novel approaches
    • Hybrid systems
    • Performance optimization

Week 8: Applications

  1. docs/guides/implementation/clinical_applications

    • Psychiatric models
    • Neurological disorders
    • Therapeutic applications
  2. docs/guides/implementation/technological_applications

    • Robotics
    • Computer vision
    • Signal processing

Projects

Beginner Projects

  1. docs/examples/simple_prediction

    • Basic prediction
    • Error computation
    • Learning rules
  2. docs/examples/visual_prediction

    • Image processing
    • Feature extraction
    • Pattern completion

Intermediate Projects

  1. docs/examples/temporal_sequence

    • Sequence learning
    • Time series prediction
    • Dynamic patterns
  2. docs/examples/multimodal_integration

    • Sensory fusion
    • Cross-modal prediction
    • Feature binding

Advanced Projects

  1. docs/examples/cognitive_architecture

    • Full system implementation
    • Multiple cognitive functions
    • Real-world applications
  2. docs/examples/clinical_model

    • Disorder modeling
    • Intervention testing
    • Treatment simulation

Resources

Reading Materials

  1. Core Papers

    • Foundational papers
    • Implementation papers
    • Review articles
  2. Books

    • Theoretical texts
    • Implementation guides
    • Application studies

Tools and Libraries

  1. Software Tools

    • Neural networks
    • Predictive models
    • Analysis tools
  2. Development Resources

    • Code repositories
    • Documentation
    • Community resources

Assessment

Knowledge Checks

  1. Theoretical Understanding

    • Concept tests
    • Mathematical problems
    • Design challenges
  2. Implementation Skills

    • Coding exercises
    • System design
    • Performance analysis

Final Projects

  1. Research Implementation

    • Novel contribution
    • Experimental validation
    • Documentation
  2. Practical Application

    • Real-world problem
    • Solution design
    • Performance evaluation

Next Steps

Advanced Topics

  1. docs/guides/learning_paths/advanced_predictive_processing

    • Complex architectures
    • Novel applications
    • Research directions
  2. docs/guides/learning_paths/research_directions

    • Current challenges
    • Open questions
    • Future developments
  1. docs/guides/learning_paths/active_inference
  2. docs/guides/learning_paths/deep_learning
  3. docs/guides/learning_paths/cognitive_science