cognitive/docs/guides/learning_paths/predictive_processing.md
Daniel Ari Friedman 59a4bfb111 Updates
2025-02-12 10:51:38 -08:00

256 строки
6.3 KiB
Markdown

---
title: Predictive Processing Learning Path
type: learning_path
status: stable
created: 2024-02-12
tags:
- learning-path
- predictive-processing
- guide
semantic_relations:
- type: implements
links: [[../documentation_standards]]
- type: relates
links:
- [[../../knowledge_base/cognitive/predictive_processing]]
- [[active_inference_learning_path]]
---
# Predictive Processing Learning Path
## Overview
This learning path guides you through understanding and implementing predictive processing principles in cognitive modeling.
## Prerequisites
### Mathematics
1. [[knowledge_base/mathematics/probability_theory|Probability Theory]]
- Conditional probability
- Bayesian inference
- Probabilistic graphical models
2. [[knowledge_base/mathematics/information_theory|Information Theory]]
- Entropy
- Mutual information
- KL divergence
3. [[knowledge_base/mathematics/optimization|Optimization]]
- Gradient descent
- Error minimization
- Loss functions
### Programming
1. Python Fundamentals
- NumPy/SciPy
- PyTorch/TensorFlow
- Scientific computing
2. Software Engineering
- Object-oriented programming
- Testing frameworks
- Version control
## Learning Path
### 1. Theoretical Foundations
#### Week 1: Core Concepts
1. [[knowledge_base/cognitive/predictive_coding|Predictive Coding]]
- Neural basis
- Hierarchical processing
- Error minimization
2. [[knowledge_base/cognitive/hierarchical_inference|Hierarchical Inference]]
- Layer organization
- Information flow
- Prediction errors
#### Week 2: Advanced Theory
1. [[knowledge_base/cognitive/precision_weighting|Precision Weighting]]
- Uncertainty estimation
- Attention mechanisms
- Dynamic control
2. [[knowledge_base/cognitive/temporal_prediction|Temporal Prediction]]
- Time series prediction
- Sequence learning
- Dynamic models
### 2. Implementation Basics
#### Week 3: Basic Implementation
1. [[docs/guides/implementation/predictive_network|Predictive Network]]
- Network architecture
- Layer implementation
- Error computation
2. [[docs/guides/implementation/error_propagation|Error Propagation]]
- Forward predictions
- Backward errors
- Update mechanisms
#### Week 4: Core Mechanisms
1. [[docs/guides/implementation/precision_mechanisms|Precision Mechanisms]]
- Precision estimation
- Attention control
- Uncertainty handling
2. [[docs/guides/implementation/temporal_models|Temporal Models]]
- Sequence prediction
- Time series handling
- Dynamic updating
### 3. Advanced Applications
#### Week 5: Complex Systems
1. [[docs/guides/implementation/hierarchical_systems|Hierarchical Systems]]
- Multi-layer networks
- Deep architectures
- Information integration
2. [[docs/guides/implementation/multimodal_processing|Multimodal Processing]]
- Sensory integration
- Cross-modal prediction
- Feature binding
#### Week 6: Real-world Applications
1. [[docs/guides/implementation/perception_systems|Perception Systems]]
- Visual processing
- Auditory analysis
- Sensory integration
2. [[docs/guides/implementation/cognitive_tasks|Cognitive Tasks]]
- Decision making
- Learning tasks
- Memory systems
### 4. Research Topics
#### Week 7: Current Research
1. [[docs/guides/research/current_developments|Current Developments]]
- Latest findings
- Research directions
- Open questions
2. [[docs/guides/research/advanced_architectures|Advanced Architectures]]
- Novel approaches
- Hybrid systems
- Performance optimization
#### Week 8: Applications
1. [[docs/guides/implementation/clinical_applications|Clinical Applications]]
- Psychiatric models
- Neurological disorders
- Therapeutic applications
2. [[docs/guides/implementation/technological_applications|Technological Applications]]
- Robotics
- Computer vision
- Signal processing
## Projects
### Beginner Projects
1. [[docs/examples/simple_prediction|Simple Prediction]]
- Basic prediction
- Error computation
- Learning rules
2. [[docs/examples/visual_prediction|Visual Prediction]]
- Image processing
- Feature extraction
- Pattern completion
### Intermediate Projects
1. [[docs/examples/temporal_sequence|Temporal Sequence]]
- Sequence learning
- Time series prediction
- Dynamic patterns
2. [[docs/examples/multimodal_integration|Multimodal Integration]]
- Sensory fusion
- Cross-modal prediction
- Feature binding
### Advanced Projects
1. [[docs/examples/cognitive_architecture|Cognitive Architecture]]
- Full system implementation
- Multiple cognitive functions
- Real-world applications
2. [[docs/examples/clinical_model|Clinical Model]]
- Disorder modeling
- Intervention testing
- Treatment simulation
## Resources
### Reading Materials
1. Core Papers
- Foundational papers
- Implementation papers
- Review articles
2. Books
- Theoretical texts
- Implementation guides
- Application studies
### Tools and Libraries
1. Software Tools
- Neural networks
- Predictive models
- Analysis tools
2. Development Resources
- Code repositories
- Documentation
- Community resources
## Assessment
### Knowledge Checks
1. Theoretical Understanding
- Concept tests
- Mathematical problems
- Design challenges
2. Implementation Skills
- Coding exercises
- System design
- Performance analysis
### Final Projects
1. Research Implementation
- Novel contribution
- Experimental validation
- Documentation
2. Practical Application
- Real-world problem
- Solution design
- Performance evaluation
## Next Steps
### Advanced Topics
1. [[docs/guides/learning_paths/advanced_predictive_processing|Advanced Predictive Processing]]
- Complex architectures
- Novel applications
- Research directions
2. [[docs/guides/learning_paths/research_directions|Research Directions]]
- Current challenges
- Open questions
- Future developments
### Related Paths
1. [[docs/guides/learning_paths/active_inference|Active Inference]]
2. [[docs/guides/learning_paths/deep_learning|Deep Learning]]
3. [[docs/guides/learning_paths/cognitive_science|Cognitive Science]]
## Related Documentation
- [[docs/guides/machine_learning]]
- [[docs/guides/research]]
- [[docs/guides/implementation/predictive_processing_implementation]]