зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-29 12:16:04 +02:00
3.9 KiB
3.9 KiB
POMDP Structure Guide
Overview
This guide explains our modular approach to representing Active Inference POMDPs using Obsidian's knowledge management capabilities.
Philosophy
Our approach combines:
- Machine-readable matrix specifications
- Human-readable documentation
- Bidirectional linking for relationships
- Version control for evolution
- Visualization capabilities
Core Components
Matrix Specifications
Each POMDP matrix has its own specification:
- A_matrix - Perception (observation mapping)
- B_matrix - Transitions (dynamics)
- C_matrix - Preferences (goals)
- D_matrix - Priors (initial beliefs)
- E_matrix - Affordances (policies)
State Spaces
Fundamental spaces are defined separately:
Machine Readability
YAML Frontmatter
---
type: matrix_spec
id: unique_identifier
matrix_type: perception
created: timestamp
modified: timestamp
tags: [matrix, type, active-inference]
related_spaces: [space1, space2]
---
Matrix Data Structure
matrix_data:
format: numpy.ndarray
dtype: float32
initialization: method
storage: path/to/data.npy
Constraints
constraints:
- mathematical_property
- dimensional_requirement
- probability_constraint
Knowledge Integration
Bidirectional Links
- Matrix ↔ Space relationships
- Component dependencies
- Implementation references
Tag Taxonomy
- #matrix
- #state-space
- #active-inference
- #pomdp
- #generative-model
Computational Interface
Matrix Operations
from src.models.matrices import MatrixLoader
# Load matrix specification
A = MatrixLoader.load("A_matrix")
# Perform operations
result = A.update(observation)
State Space Interface
from src.models.spaces import StateSpace
# Initialize space
s_space = StateSpace.from_spec("s_space")
# Update beliefs
s_space.update_belief(evidence)
Visualization Pipeline
Matrix Visualization
- Load specification from markdown
- Read matrix data
- Generate visualization
- Export to desired format
Network Visualization
- Extract relationship graph
- Apply layout algorithm
- Render interactive view
- Enable exploration
Version Control
Matrix Evolution
- Track changes in specifications
- Version matrix data
- Document modifications
- Maintain history
Knowledge Base Updates
- Link updates
- Relationship changes
- Documentation evolution
- Implementation refinements
Integration Examples
Active Inference Implementation
class ActiveInferencePOMDP:
def __init__(self, agent_spec: str):
self.A = MatrixLoader.load("A_matrix")
self.B = MatrixLoader.load("B_matrix")
self.C = MatrixLoader.load("C_matrix")
self.D = MatrixLoader.load("D_matrix")
self.E = MatrixLoader.load("E_matrix")
def infer_state(self, observation):
"""Perform state inference"""
pass
def select_policy(self):
"""Select optimal policy"""
pass
Visualization Generation
class POMDPVisualizer:
def __init__(self, agent_spec: str):
self.spec = load_spec(agent_spec)
def plot_matrices(self):
"""Generate matrix plots"""
pass
def plot_state_space(self):
"""Visualize state space"""
pass
Best Practices
Specification Writing
- Clear structure
- Complete metadata
- Explicit constraints
- Comprehensive documentation
Knowledge Organization
- Consistent naming
- Meaningful links
- Proper tagging
- Regular updates
Implementation
- Type checking
- Constraint validation
- Error handling
- Performance optimization