зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-30 04:36:05 +02:00
5.6 KiB
5.6 KiB
Documentation Roadmap
title: Documentation Roadmap type: roadmap status: stable created: 2024-02-06 tags:
- roadmap
- planning
- documentation
- maintenance semantic_relations:
- type: implements links: documentation_standards
- type: relates links:
Overview
This roadmap outlines the strategic direction for maintaining and enhancing the Cognitive Modeling documentation framework. It provides a structured approach to documentation development, maintenance, and evolution.
Current Documentation Structure
Core Documentation
docs/
├── guides/ # Implementation guides and tutorials
├── concepts/ # Core theoretical concepts
├── api/ # API reference documentation
├── templates/ # Documentation templates
├── research/ # Research documentation
├── tools/ # Development tools documentation
└── examples/ # Usage examples
Documentation Standards
1. File Organization
- Follow ai_file_organization for consistent structure
- Implement naming_conventions for all files
- Maintain linking_completeness across documents
2. Content Management
- Apply content_management guidelines
- Follow ai_documentation_style for formatting
- Ensure machine_readability for AI processing
3. Quality Assurance
- Regular validation using ai_validation_framework
- Link integrity checks via linking_validation
- Content analysis through ai_semantic_processing
Maintenance Schedule
Daily Tasks
- Monitor and fix broken links
- Update documentation for new code changes
- Review and address documentation issues
Weekly Tasks
- Validate documentation completeness
- Update examples with new use cases
- Review and enhance API documentation
Monthly Tasks
- Comprehensive documentation review
- Update roadmap and priorities
- Enhance machine-readable features
- Integrate new documentation tools
Enhancement Priorities
1. Content Quality
- Enhance semantic relationships between documents
- Improve code example coverage
- Expand theoretical foundations documentation
- Add more interactive examples
2. Technical Infrastructure
- Implement automated documentation testing
- Enhance documentation generation tools
- Improve search and discovery features
- Develop documentation analytics
3. User Experience
- Create interactive documentation guides
- Enhance navigation and cross-referencing
- Improve documentation accessibility
- Add more visual documentation elements
Implementation Timeline
Q1 2024
-
Documentation Framework Enhancement
- Improve semantic linking
- Enhance validation tools
- Update style guidelines
-
Content Development
- Expand core concepts
- Add advanced tutorials
- Create video documentation
Q2 2024
-
Technical Infrastructure
- Automated testing
- Enhanced search
- Analytics dashboard
-
User Experience
- Interactive guides
- Visual documentation
- Accessibility improvements
Validation Framework
1. Documentation Quality
quality_metrics = {
"completeness": {
"required_sections": 1.0, # All required sections present
"optional_sections": 0.8, # 80% optional sections covered
"code_examples": 0.9 # 90% code example coverage
},
"accuracy": {
"technical_accuracy": 1.0, # Technical content accuracy
"code_correctness": 1.0, # Code example correctness
"link_validity": 0.95 # Link integrity
},
"readability": {
"clarity": 0.9, # Content clarity
"structure": 0.95, # Document structure
"formatting": 1.0 # Formatting consistency
}
}
2. Machine Readability
machine_metrics = {
"semantic_markup": {
"metadata_completeness": 1.0,
"relationship_clarity": 0.9,
"processing_hooks": 0.85
},
"ai_processing": {
"parse_success": 0.95,
"context_preservation": 0.9,
"knowledge_integration": 0.85
}
}
Integration Points
1. Development Workflow
- Integration with code review process
- Documentation-driven development
- Automated documentation updates
2. Research Integration
- Research paper documentation
- Experiment documentation
- Results documentation
3. Educational Resources
- Tutorial development
- Learning path creation
- Interactive examples
Best Practices
1. Documentation Development
- Start with concept documentation
- Follow with implementation guides
- Include practical examples
- Add validation tests
2. Maintenance
- Regular review cycles
- Version control integration
- Automated validation
- User feedback integration
3. Evolution
- Continuous improvement
- Technology adaptation
- User needs assessment
- Documentation metrics
Success Metrics
1. Documentation Coverage
- 100% API documentation
- 90% code example coverage
- 95% concept documentation
- 85% advanced topics
2. Quality Metrics
- 95% documentation accuracy
- 90% user satisfaction
- 85% automated test coverage
- 80% search effectiveness
3. Usage Metrics
- Documentation access rates
- Search success rates
- User engagement levels
- Feedback incorporation