зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-30 12:46:04 +02:00
5.9 KiB
5.9 KiB
| title | type | status | created | tags | semantic_relations | |||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| POMDP Framework Learning Path | learning_path | stable | 2024-02-07 |
|
|
POMDP Framework Learning Path
Overview
This learning path guides you through understanding and implementing Partially Observable Markov Decision Processes (POMDPs), with special focus on their application in active inference. You'll learn the theoretical foundations, mathematical principles, and practical implementations.
Prerequisites
Required Knowledge
- knowledge_base/mathematics/probability_theory
- knowledge_base/mathematics/statistical_foundations
- knowledge_base/mathematics/information_theory
Recommended Background
- Python programming
- Basic reinforcement learning
- Linear algebra
Learning Progression
1. POMDP Foundations (Week 1-2)
Core Concepts
- knowledge_base/mathematics/probability_theory
- knowledge_base/agents/GenericPOMDP/belief_states
- knowledge_base/agents/GenericPOMDP/policy_selection
Practical Exercises
Learning Objectives
- Understand POMDP fundamentals
- Implement belief state updates
- Master policy evaluation
2. Active Inference Integration (Week 3-4)
Advanced Concepts
- knowledge_base/cognitive/active_inference
- knowledge_base/mathematics/free_energy_theory
- knowledge_base/mathematics/expected_free_energy
Implementation Practice
Learning Objectives
- Integrate active inference with POMDPs
- Implement free energy minimization
- Develop policy selection mechanisms
3. Advanced Implementation (Week 5-6)
Core Components
- knowledge_base/mathematics/variational_methods
- knowledge_base/mathematics/path_integral_theory
- knowledge_base/cognitive/hierarchical_processing
Projects
Learning Objectives
- Implement hierarchical models
- Develop multi-agent systems
- Master advanced POMDP concepts
Implementation Examples
Basic POMDP
class POMDPAgent:
def __init__(self, config):
self.belief_state = initialize_belief_state()
self.transition_model = create_transition_model()
self.observation_model = create_observation_model()
def update_belief(self, observation):
"""Update belief state using Bayes rule."""
self.belief_state = bayes_update(
self.belief_state,
observation,
self.observation_model
)
def select_action(self):
"""Select action using current belief state."""
return policy_selection(self.belief_state)
Active Inference POMDP
class ActiveInferencePOMDP:
def __init__(self, config):
self.belief_state = initialize_belief_state()
self.generative_model = create_generative_model()
def update(self, observation):
"""Update using variational inference."""
self.belief_state = variational_update(
self.belief_state,
observation,
self.generative_model
)
def select_action(self):
"""Select action using expected free energy."""
policies = generate_policies()
G = compute_expected_free_energy(
self.belief_state,
policies,
self.generative_model
)
return select_policy(G)
Study Resources
Core Reading
- knowledge_base/agents/GenericPOMDP/README
- knowledge_base/cognitive/active_inference
- knowledge_base/mathematics/free_energy_theory
Code Examples
Additional Resources
- Research papers
- Tutorial notebooks
- Video lectures
Assessment
Knowledge Checkpoints
- POMDP fundamentals
- Active inference integration
- Advanced implementations
- Real-world applications
Projects
- Mini-project: Basic POMDP implementation
- Integration: Active inference POMDP
- Final project: Complex application
Success Criteria
- Working POMDP implementation
- Active inference integration
- Advanced model development
- Application deployment
Next Steps
Advanced Paths
Specializations
Related Paths
Prerequisites
Follow-up Paths
Common Challenges
Theoretical Challenges
- Understanding belief state updates
- Grasping policy evaluation
- Integrating active inference
Implementation Challenges
- Efficient belief updates
- Policy optimization
- Scalability issues
Solutions
- Start with simple examples
- Use provided templates
- Progressive complexity
- Regular testing and validation