зеркало из
				https://github.com/docxology/cognitive.git
				synced 2025-10-30 20:56:04 +02:00 
			
		
		
		
	
		
			
				
	
	
		
			207 строки
		
	
	
		
			5.9 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			207 строки
		
	
	
		
			5.9 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| title: POMDP Framework Learning Path
 | |
| type: learning_path
 | |
| status: stable
 | |
| created: 2024-02-07
 | |
| tags:
 | |
|   - pomdp
 | |
|   - active_inference
 | |
|   - learning
 | |
| semantic_relations:
 | |
|   - type: implements
 | |
|     links: [[learning_path_template]]
 | |
|   - type: relates
 | |
|     links:
 | |
|       - [[knowledge_base/agents/GenericPOMDP/README]]
 | |
|       - [[knowledge_base/cognitive/active_inference]]
 | |
| ---
 | |
| 
 | |
| # POMDP Framework Learning Path
 | |
| 
 | |
| ## Overview
 | |
| 
 | |
| This learning path guides you through understanding and implementing Partially Observable Markov Decision Processes (POMDPs), with special focus on their application in active inference. You'll learn the theoretical foundations, mathematical principles, and practical implementations.
 | |
| 
 | |
| ## Prerequisites
 | |
| 
 | |
| ### Required Knowledge
 | |
| - [[knowledge_base/mathematics/probability_theory|Probability Theory]]
 | |
| - [[knowledge_base/mathematics/statistical_foundations|Statistical Foundations]]
 | |
| - [[knowledge_base/mathematics/information_theory|Information Theory]]
 | |
| 
 | |
| ### Recommended Background
 | |
| - Python programming
 | |
| - Basic reinforcement learning
 | |
| - Linear algebra
 | |
| 
 | |
| ## Learning Progression
 | |
| 
 | |
| ### 1. POMDP Foundations (Week 1-2)
 | |
| #### Core Concepts
 | |
| - [[knowledge_base/mathematics/probability_theory|Probability Theory]]
 | |
| - [[knowledge_base/agents/GenericPOMDP/belief_states|Belief States]]
 | |
| - [[knowledge_base/agents/GenericPOMDP/policy_selection|Policy Selection]]
 | |
| 
 | |
| #### Practical Exercises
 | |
| - [[examples/basic_pomdp|Basic POMDP Implementation]]
 | |
| - [[examples/belief_updating|Belief Updating Exercise]]
 | |
| 
 | |
| #### Learning Objectives
 | |
| - Understand POMDP fundamentals
 | |
| - Implement belief state updates
 | |
| - Master policy evaluation
 | |
| 
 | |
| ### 2. Active Inference Integration (Week 3-4)
 | |
| #### Advanced Concepts
 | |
| - [[knowledge_base/cognitive/active_inference|Active Inference]]
 | |
| - [[knowledge_base/mathematics/free_energy_theory|Free Energy Theory]]
 | |
| - [[knowledge_base/mathematics/expected_free_energy|Expected Free Energy]]
 | |
| 
 | |
| #### Implementation Practice
 | |
| - [[examples/active_inference_pomdp|Active Inference POMDP]]
 | |
| - [[examples/free_energy_policy|Free Energy Policy Selection]]
 | |
| 
 | |
| #### Learning Objectives
 | |
| - Integrate active inference with POMDPs
 | |
| - Implement free energy minimization
 | |
| - Develop policy selection mechanisms
 | |
| 
 | |
| ### 3. Advanced Implementation (Week 5-6)
 | |
| #### Core Components
 | |
| - [[knowledge_base/mathematics/variational_methods|Variational Methods]]
 | |
| - [[knowledge_base/mathematics/path_integral_theory|Path Integral Methods]]
 | |
| - [[knowledge_base/cognitive/hierarchical_processing|Hierarchical Models]]
 | |
| 
 | |
| #### Projects
 | |
| - [[examples/hierarchical_pomdp|Hierarchical POMDP]]
 | |
| - [[examples/multi_agent_pomdp|Multi-Agent POMDP]]
 | |
| 
 | |
| #### Learning Objectives
 | |
| - Implement hierarchical models
 | |
| - Develop multi-agent systems
 | |
| - Master advanced POMDP concepts
 | |
| 
 | |
| ## Implementation Examples
 | |
| 
 | |
| ### Basic POMDP
 | |
| ```python
 | |
| class POMDPAgent:
 | |
|     def __init__(self, config):
 | |
|         self.belief_state = initialize_belief_state()
 | |
|         self.transition_model = create_transition_model()
 | |
|         self.observation_model = create_observation_model()
 | |
|         
 | |
|     def update_belief(self, observation):
 | |
|         """Update belief state using Bayes rule."""
 | |
|         self.belief_state = bayes_update(
 | |
|             self.belief_state,
 | |
|             observation,
 | |
|             self.observation_model
 | |
|         )
 | |
|         
 | |
|     def select_action(self):
 | |
|         """Select action using current belief state."""
 | |
|         return policy_selection(self.belief_state)
 | |
| ```
 | |
| 
 | |
| ### Active Inference POMDP
 | |
| ```python
 | |
| class ActiveInferencePOMDP:
 | |
|     def __init__(self, config):
 | |
|         self.belief_state = initialize_belief_state()
 | |
|         self.generative_model = create_generative_model()
 | |
|         
 | |
|     def update(self, observation):
 | |
|         """Update using variational inference."""
 | |
|         self.belief_state = variational_update(
 | |
|             self.belief_state,
 | |
|             observation,
 | |
|             self.generative_model
 | |
|         )
 | |
|         
 | |
|     def select_action(self):
 | |
|         """Select action using expected free energy."""
 | |
|         policies = generate_policies()
 | |
|         G = compute_expected_free_energy(
 | |
|             self.belief_state,
 | |
|             policies,
 | |
|             self.generative_model
 | |
|         )
 | |
|         return select_policy(G)
 | |
| ```
 | |
| 
 | |
| ## Study Resources
 | |
| 
 | |
| ### Core Reading
 | |
| - [[knowledge_base/agents/GenericPOMDP/README|POMDP Framework]]
 | |
| - [[knowledge_base/cognitive/active_inference|Active Inference]]
 | |
| - [[knowledge_base/mathematics/free_energy_theory|Free Energy Theory]]
 | |
| 
 | |
| ### Code Examples
 | |
| - [[examples/basic_pomdp|Basic POMDP]]
 | |
| - [[examples/active_inference_pomdp|Active Inference POMDP]]
 | |
| - [[examples/hierarchical_pomdp|Hierarchical POMDP]]
 | |
| 
 | |
| ### Additional Resources
 | |
| - Research papers
 | |
| - Tutorial notebooks
 | |
| - Video lectures
 | |
| 
 | |
| ## Assessment
 | |
| 
 | |
| ### Knowledge Checkpoints
 | |
| 1. POMDP fundamentals
 | |
| 2. Active inference integration
 | |
| 3. Advanced implementations
 | |
| 4. Real-world applications
 | |
| 
 | |
| ### Projects
 | |
| 1. Mini-project: Basic POMDP implementation
 | |
| 2. Integration: Active inference POMDP
 | |
| 3. Final project: Complex application
 | |
| 
 | |
| ### Success Criteria
 | |
| - Working POMDP implementation
 | |
| - Active inference integration
 | |
| - Advanced model development
 | |
| - Application deployment
 | |
| 
 | |
| ## Next Steps
 | |
| 
 | |
| ### Advanced Paths
 | |
| - [[learning_paths/advanced_pomdp|Advanced POMDP]]
 | |
| - [[learning_paths/multi_agent_systems|Multi-Agent Systems]]
 | |
| - [[learning_paths/robotics_control|Robotics Control]]
 | |
| 
 | |
| ### Specializations
 | |
| - [[specializations/reinforcement_learning|Reinforcement Learning]]
 | |
| - [[specializations/robotics|Robotics]]
 | |
| - [[specializations/ai|Artificial Intelligence]]
 | |
| 
 | |
| ## Related Paths
 | |
| 
 | |
| ### Prerequisites
 | |
| - [[learning_paths/probability_theory|Probability Theory]]
 | |
| - [[learning_paths/reinforcement_learning|Reinforcement Learning]]
 | |
| 
 | |
| ### Follow-up Paths
 | |
| - [[learning_paths/advanced_ai|Advanced AI]]
 | |
| - [[learning_paths/robotics|Robotics]]
 | |
| 
 | |
| ## Common Challenges
 | |
| 
 | |
| ### Theoretical Challenges
 | |
| - Understanding belief state updates
 | |
| - Grasping policy evaluation
 | |
| - Integrating active inference
 | |
| 
 | |
| ### Implementation Challenges
 | |
| - Efficient belief updates
 | |
| - Policy optimization
 | |
| - Scalability issues
 | |
| 
 | |
| ### Solutions
 | |
| - Start with simple examples
 | |
| - Use provided templates
 | |
| - Progressive complexity
 | |
| - Regular testing and validation  | 
