зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-30 20:56:04 +02:00
7.1 KiB
7.1 KiB
| title | type | status | created | tags | semantic_relations | |||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Swarm Intelligence Learning Path | learning_path | stable | 2024-02-07 |
|
|
Swarm Intelligence Learning Path
Overview
This learning path guides you through understanding and implementing swarm intelligence systems, with special focus on biologically-inspired collective behavior. You'll learn theoretical principles, mathematical models, and practical implementations using the ant colony example.
Prerequisites
Required Knowledge
- knowledge_base/mathematics/probability_theory
- knowledge_base/cognitive/emergence_self_organization
- knowledge_base/systems/systems_theory
Recommended Background
- Python programming
- Basic agent-based modeling
- Complex systems concepts
Learning Progression
1. Foundations (Week 1-2)
Core Concepts
- knowledge_base/cognitive/collective_behavior
- knowledge_base/cognitive/emergence_self_organization
- knowledge_base/cognitive/stigmergic_coordination
Practical Exercises
Learning Objectives
- Understand swarm principles
- Implement basic swarm behaviors
- Analyze emergent patterns
2. Ant Colony Systems (Week 3-4)
Advanced Concepts
- knowledge_base/cognitive/social_insect_cognition
- knowledge_base/cognitive/collective_behavior_ants
- knowledge_base/cognitive/pheromone_communication
Implementation Practice
Learning Objectives
- Implement pheromone systems
- Model foraging behavior
- Develop path optimization
3. Advanced Implementation (Week 5-6)
Core Components
- knowledge_base/cognitive/active_inference
- knowledge_base/mathematics/path_integral_theory
- knowledge_base/cognitive/hierarchical_processing
Projects
Learning Objectives
- Implement complete colony system
- Integrate active inference
- Develop advanced features
Implementation Examples
Basic Swarm Agent
class SwarmAgent:
def __init__(self, config):
self.position = initialize_position()
self.velocity = initialize_velocity()
self.sensors = create_sensors()
def update(self, neighbors, environment):
"""Update agent state based on local information."""
# Process sensor information
local_info = self.sensors.process(neighbors, environment)
# Update movement
self.velocity = compute_velocity(local_info)
self.position += self.velocity
def interact(self, environment):
"""Interact with environment (e.g., deposit pheromones)."""
pass
Ant Colony Implementation
class AntColony:
def __init__(self, config):
self.agents = create_agents(config)
self.environment = create_environment(config)
self.pheromone_grid = initialize_pheromones()
def update(self, dt):
"""Update colony state."""
# Update agents
for agent in self.agents:
observation = self.environment.get_local_state(agent.position)
agent.update(dt, observation)
# Update environment
self.environment.update(dt)
self.pheromone_grid *= self.config.pheromone_decay
def run_simulation(self, steps):
"""Run simulation for specified steps."""
for step in range(steps):
self.update(self.config.timestep)
self.collect_data(step)
Study Resources
Core Reading
- knowledge_base/cognitive/swarm_intelligence
- knowledge_base/cognitive/collective_behavior
- knowledge_base/cognitive/social_insect_cognition
Code Examples
Additional Resources
- Research papers
- Video tutorials
- Interactive simulations
Assessment
Knowledge Checkpoints
- Swarm fundamentals
- Ant colony systems
- Advanced implementations
- Real-world applications
Projects
- Mini-project: Basic swarm simulation
- Implementation: Ant colony system
- Final project: Advanced application
Success Criteria
- Working swarm implementation
- Ant colony simulation
- Advanced features
- Performance optimization
Next Steps
Advanced Paths
Specializations
- specializations/swarm_robotics
- specializations/collective_intelligence
- specializations/bio_inspired_computing
Related Paths
Prerequisites
Follow-up Paths
Common Challenges
Theoretical Challenges
- Understanding emergence
- Modeling collective behavior
- Analyzing system dynamics
Implementation Challenges
- Efficient simulation
- Scalability issues
- Visualization complexity
Solutions
- Start with simple models
- Incremental complexity
- Regular validation
- Performance profiling
Example Configurations
Basic Swarm Config
swarm:
population_size: 100
sensor_range: 5.0
max_speed: 2.0
interaction_radius: 3.0
environment:
size: [100, 100]
obstacles: 10
boundary_conditions: "periodic"
Ant Colony Config
colony:
ants: 50
nest_location: [50, 50]
pheromone_decay: 0.99
foraging:
food_sources: 5
food_value: 1.0
max_steps: 10000
Visualization Tools
Basic Visualization
def visualize_swarm(agents, environment):
"""Visualize swarm behavior."""
plt.figure(figsize=(10, 10))
# Plot agents
positions = [agent.position for agent in agents]
plt.scatter([p.x for p in positions],
[p.y for p in positions])
# Plot environment
environment.plot()
plt.show()
Advanced Analysis
def analyze_behavior(simulation_data):
"""Analyze collective behavior patterns."""
# Compute metrics
coherence = compute_coherence(simulation_data)
efficiency = compute_efficiency(simulation_data)
# Visualize results
plot_metrics(coherence, efficiency)