cognitive/docs/guides/learning_paths/swarm_intelligence.md
Daniel Ari Friedman a61f13a26f Updates
2025-02-07 11:08:25 -08:00

267 строки
7.1 KiB
Markdown

---
title: Swarm Intelligence Learning Path
type: learning_path
status: stable
created: 2024-02-07
tags:
- swarm_intelligence
- collective_behavior
- learning
semantic_relations:
- type: implements
links: [[learning_path_template]]
- type: relates
links:
- [[knowledge_base/cognitive/swarm_intelligence]]
- [[knowledge_base/cognitive/collective_behavior]]
---
# Swarm Intelligence Learning Path
## Overview
This learning path guides you through understanding and implementing swarm intelligence systems, with special focus on biologically-inspired collective behavior. You'll learn theoretical principles, mathematical models, and practical implementations using the ant colony example.
## Prerequisites
### Required Knowledge
- [[knowledge_base/mathematics/probability_theory|Probability Theory]]
- [[knowledge_base/cognitive/emergence_self_organization|Emergence and Self-Organization]]
- [[knowledge_base/systems/systems_theory|Systems Theory]]
### Recommended Background
- Python programming
- Basic agent-based modeling
- Complex systems concepts
## Learning Progression
### 1. Foundations (Week 1-2)
#### Core Concepts
- [[knowledge_base/cognitive/collective_behavior|Collective Behavior]]
- [[knowledge_base/cognitive/emergence_self_organization|Emergence]]
- [[knowledge_base/cognitive/stigmergic_coordination|Stigmergic Coordination]]
#### Practical Exercises
- [[examples/basic_swarm|Basic Swarm Simulation]]
- [[examples/emergence_patterns|Emergence Patterns]]
#### Learning Objectives
- Understand swarm principles
- Implement basic swarm behaviors
- Analyze emergent patterns
### 2. Ant Colony Systems (Week 3-4)
#### Advanced Concepts
- [[knowledge_base/cognitive/social_insect_cognition|Social Insect Cognition]]
- [[knowledge_base/cognitive/collective_behavior_ants|Ant Colony Behavior]]
- [[knowledge_base/cognitive/pheromone_communication|Pheromone Communication]]
#### Implementation Practice
- [[examples/pheromone_system|Pheromone System]]
- [[examples/foraging_behavior|Foraging Behavior]]
#### Learning Objectives
- Implement pheromone systems
- Model foraging behavior
- Develop path optimization
### 3. Advanced Implementation (Week 5-6)
#### Core Components
- [[knowledge_base/cognitive/active_inference|Active Inference]]
- [[knowledge_base/mathematics/path_integral_theory|Path Integral Methods]]
- [[knowledge_base/cognitive/hierarchical_processing|Hierarchical Models]]
#### Projects
- [[examples/ant_colony|Ant Colony Simulation]]
- [[examples/multi_colony|Multi-Colony System]]
#### Learning Objectives
- Implement complete colony system
- Integrate active inference
- Develop advanced features
## Implementation Examples
### Basic Swarm Agent
```python
class SwarmAgent:
def __init__(self, config):
self.position = initialize_position()
self.velocity = initialize_velocity()
self.sensors = create_sensors()
def update(self, neighbors, environment):
"""Update agent state based on local information."""
# Process sensor information
local_info = self.sensors.process(neighbors, environment)
# Update movement
self.velocity = compute_velocity(local_info)
self.position += self.velocity
def interact(self, environment):
"""Interact with environment (e.g., deposit pheromones)."""
pass
```
### Ant Colony Implementation
```python
class AntColony:
def __init__(self, config):
self.agents = create_agents(config)
self.environment = create_environment(config)
self.pheromone_grid = initialize_pheromones()
def update(self, dt):
"""Update colony state."""
# Update agents
for agent in self.agents:
observation = self.environment.get_local_state(agent.position)
agent.update(dt, observation)
# Update environment
self.environment.update(dt)
self.pheromone_grid *= self.config.pheromone_decay
def run_simulation(self, steps):
"""Run simulation for specified steps."""
for step in range(steps):
self.update(self.config.timestep)
self.collect_data(step)
```
## Study Resources
### Core Reading
- [[knowledge_base/cognitive/swarm_intelligence|Swarm Intelligence]]
- [[knowledge_base/cognitive/collective_behavior|Collective Behavior]]
- [[knowledge_base/cognitive/social_insect_cognition|Social Insect Cognition]]
### Code Examples
- [[examples/basic_swarm|Basic Swarm]]
- [[examples/ant_colony|Ant Colony]]
- [[examples/multi_colony|Multi-Colony]]
### Additional Resources
- Research papers
- Video tutorials
- Interactive simulations
## Assessment
### Knowledge Checkpoints
1. Swarm fundamentals
2. Ant colony systems
3. Advanced implementations
4. Real-world applications
### Projects
1. Mini-project: Basic swarm simulation
2. Implementation: Ant colony system
3. Final project: Advanced application
### Success Criteria
- Working swarm implementation
- Ant colony simulation
- Advanced features
- Performance optimization
## Next Steps
### Advanced Paths
- [[learning_paths/advanced_swarm|Advanced Swarm Systems]]
- [[learning_paths/multi_agent_systems|Multi-Agent Systems]]
- [[learning_paths/robotics_swarms|Robotic Swarms]]
### Specializations
- [[specializations/swarm_robotics|Swarm Robotics]]
- [[specializations/collective_intelligence|Collective Intelligence]]
- [[specializations/bio_inspired_computing|Bio-inspired Computing]]
## Related Paths
### Prerequisites
- [[learning_paths/complex_systems|Complex Systems]]
- [[learning_paths/agent_based_modeling|Agent-based Modeling]]
### Follow-up Paths
- [[learning_paths/advanced_robotics|Advanced Robotics]]
- [[learning_paths/distributed_systems|Distributed Systems]]
## Common Challenges
### Theoretical Challenges
- Understanding emergence
- Modeling collective behavior
- Analyzing system dynamics
### Implementation Challenges
- Efficient simulation
- Scalability issues
- Visualization complexity
### Solutions
- Start with simple models
- Incremental complexity
- Regular validation
- Performance profiling
## Example Configurations
### Basic Swarm Config
```yaml
swarm:
population_size: 100
sensor_range: 5.0
max_speed: 2.0
interaction_radius: 3.0
environment:
size: [100, 100]
obstacles: 10
boundary_conditions: "periodic"
```
### Ant Colony Config
```yaml
colony:
ants: 50
nest_location: [50, 50]
pheromone_decay: 0.99
foraging:
food_sources: 5
food_value: 1.0
max_steps: 10000
```
## Visualization Tools
### Basic Visualization
```python
def visualize_swarm(agents, environment):
"""Visualize swarm behavior."""
plt.figure(figsize=(10, 10))
# Plot agents
positions = [agent.position for agent in agents]
plt.scatter([p.x for p in positions],
[p.y for p in positions])
# Plot environment
environment.plot()
plt.show()
```
### Advanced Analysis
```python
def analyze_behavior(simulation_data):
"""Analyze collective behavior patterns."""
# Compute metrics
coherence = compute_coherence(simulation_data)
efficiency = compute_efficiency(simulation_data)
# Visualize results
plot_metrics(coherence, efficiency)
```