зеркало из
				https://github.com/docxology/cognitive.git
				synced 2025-10-31 21:26:04 +02:00 
			
		
		
		
	
		
			
				
	
	
	
		
			3.2 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	
			3.2 KiB
		
	
	
	
	
	
	
	
| title | type | status | created | tags | semantic_relations | |||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Simulation Guide | guide | draft | 2024-02-12 | 
 | 
 | 
Simulation Framework Guide
Overview
This guide provides comprehensive documentation for running simulations in the cognitive modeling framework. It covers simulation setup, execution, analysis, and visualization.
Simulation Components
Core Elements
- 
Model Configuration - Parameter settings
- Initial conditions
- Environment setup
- Agent definitions
 
- 
Execution Pipeline - Simulation steps
- State updates
- Event handling
- Data collection
 
- 
Analysis Tools - Data processing
- Statistical analysis
- Performance metrics
- Result validation
 
Configuration
simulation:
  name: cognitive_simulation
  duration: 1000  # timesteps
  agents: 10
  environment:
    type: dynamic
    dimensions: [100, 100]
  parameters:
    learning_rate: 0.01
    noise_level: 0.1
    update_interval: 5
Running Simulations
Basic Usage
from cognitive.simulation import Simulator
# Create simulator
sim = Simulator(config_path="config.yaml")
# Run simulation
results = sim.run()
# Analyze results
analysis = sim.analyze(results)
# Visualize
sim.visualize(analysis)
Advanced Features
- 
Batch Processing # Run multiple simulations batch_results = sim.run_batch( num_runs=10, parallel=True )
- 
Parameter Sweeps # Test different parameters param_results = sim.parameter_sweep( parameter="learning_rate", values=[0.01, 0.05, 0.1] )
- 
Custom Callbacks # Add custom monitoring @sim.on_step def monitor_state(state): log_metrics(state)
Analysis Tools
Data Processing
- Time series analysis
- State space analysis
- Agent behavior analysis
- Environment dynamics
Visualization
- State trajectories
- Agent interactions
- Performance metrics
- Network dynamics
Metrics
- Convergence rates
- Stability measures
- Efficiency metrics
- Error analysis
Best Practices
Performance
- Use vectorized operations
- Enable parallel processing
- Optimize memory usage
- Profile critical sections
Reproducibility
- Set random seeds
- Version configurations
- Document parameters
- Archive results
Validation
- Unit test components
- Verify constraints
- Check conservation laws
- Validate outputs
Advanced Topics
Custom Models
- Extending base classes
- Adding new behaviors
- Custom environments
- Specialized metrics
Distributed Simulation
- Multi-node execution
- Load balancing
- Data synchronization
- Result aggregation
Real-time Analysis
- Live monitoring
- Interactive visualization
- Dynamic adjustment
- Event handling
Integration Points
Data Pipeline
- Input preprocessing
- Result postprocessing
- Data storage
- Export formats
External Tools
- Visualization libraries
- Analysis packages
- Storage backends
- Monitoring systems
