зеркало из
https://github.com/docxology/cognitive.git
synced 2025-11-01 13:46:05 +02:00
186 строки
3.2 KiB
Markdown
186 строки
3.2 KiB
Markdown
---
|
|
title: Simulation Guide
|
|
type: guide
|
|
status: draft
|
|
created: 2024-02-12
|
|
tags:
|
|
- simulation
|
|
- modeling
|
|
- framework
|
|
semantic_relations:
|
|
- type: implements
|
|
links: [[model_implementation]]
|
|
- type: relates
|
|
links:
|
|
- [[implementation_guides]]
|
|
- [[ai_validation_framework]]
|
|
---
|
|
|
|
# Simulation Framework Guide
|
|
|
|
## Overview
|
|
|
|
This guide provides comprehensive documentation for running simulations in the cognitive modeling framework. It covers simulation setup, execution, analysis, and visualization.
|
|
|
|
## Simulation Components
|
|
|
|
### Core Elements
|
|
1. Model Configuration
|
|
- Parameter settings
|
|
- Initial conditions
|
|
- Environment setup
|
|
- Agent definitions
|
|
|
|
2. Execution Pipeline
|
|
- Simulation steps
|
|
- State updates
|
|
- Event handling
|
|
- Data collection
|
|
|
|
3. Analysis Tools
|
|
- Data processing
|
|
- Statistical analysis
|
|
- Performance metrics
|
|
- Result validation
|
|
|
|
### Configuration
|
|
|
|
```yaml
|
|
simulation:
|
|
name: cognitive_simulation
|
|
duration: 1000 # timesteps
|
|
agents: 10
|
|
environment:
|
|
type: dynamic
|
|
dimensions: [100, 100]
|
|
parameters:
|
|
learning_rate: 0.01
|
|
noise_level: 0.1
|
|
update_interval: 5
|
|
```
|
|
|
|
## Running Simulations
|
|
|
|
### Basic Usage
|
|
```python
|
|
from cognitive.simulation import Simulator
|
|
|
|
# Create simulator
|
|
sim = Simulator(config_path="config.yaml")
|
|
|
|
# Run simulation
|
|
results = sim.run()
|
|
|
|
# Analyze results
|
|
analysis = sim.analyze(results)
|
|
|
|
# Visualize
|
|
sim.visualize(analysis)
|
|
```
|
|
|
|
### Advanced Features
|
|
|
|
1. Batch Processing
|
|
```python
|
|
# Run multiple simulations
|
|
batch_results = sim.run_batch(
|
|
num_runs=10,
|
|
parallel=True
|
|
)
|
|
```
|
|
|
|
2. Parameter Sweeps
|
|
```python
|
|
# Test different parameters
|
|
param_results = sim.parameter_sweep(
|
|
parameter="learning_rate",
|
|
values=[0.01, 0.05, 0.1]
|
|
)
|
|
```
|
|
|
|
3. Custom Callbacks
|
|
```python
|
|
# Add custom monitoring
|
|
@sim.on_step
|
|
def monitor_state(state):
|
|
log_metrics(state)
|
|
```
|
|
|
|
## Analysis Tools
|
|
|
|
### Data Processing
|
|
- Time series analysis
|
|
- State space analysis
|
|
- Agent behavior analysis
|
|
- Environment dynamics
|
|
|
|
### Visualization
|
|
- State trajectories
|
|
- Agent interactions
|
|
- Performance metrics
|
|
- Network dynamics
|
|
|
|
### Metrics
|
|
- Convergence rates
|
|
- Stability measures
|
|
- Efficiency metrics
|
|
- Error analysis
|
|
|
|
## Best Practices
|
|
|
|
### Performance
|
|
- Use vectorized operations
|
|
- Enable parallel processing
|
|
- Optimize memory usage
|
|
- Profile critical sections
|
|
|
|
### Reproducibility
|
|
- Set random seeds
|
|
- Version configurations
|
|
- Document parameters
|
|
- Archive results
|
|
|
|
### Validation
|
|
- Unit test components
|
|
- Verify constraints
|
|
- Check conservation laws
|
|
- Validate outputs
|
|
|
|
## Advanced Topics
|
|
|
|
### Custom Models
|
|
- Extending base classes
|
|
- Adding new behaviors
|
|
- Custom environments
|
|
- Specialized metrics
|
|
|
|
### Distributed Simulation
|
|
- Multi-node execution
|
|
- Load balancing
|
|
- Data synchronization
|
|
- Result aggregation
|
|
|
|
### Real-time Analysis
|
|
- Live monitoring
|
|
- Interactive visualization
|
|
- Dynamic adjustment
|
|
- Event handling
|
|
|
|
## Integration Points
|
|
|
|
### Data Pipeline
|
|
- Input preprocessing
|
|
- Result postprocessing
|
|
- Data storage
|
|
- Export formats
|
|
|
|
### External Tools
|
|
- Visualization libraries
|
|
- Analysis packages
|
|
- Storage backends
|
|
- Monitoring systems
|
|
|
|
## Related Documentation
|
|
- [[model_implementation]]
|
|
- [[implementation_guides]]
|
|
- [[ai_validation_framework]] |