зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-29 12:16:04 +02:00
7.5 KiB
7.5 KiB
Theoretical Foundations
title: Theoretical Foundations type: concept status: stable created: 2024-02-06 tags:
- theory
- foundations
- concepts
- architecture semantic_relations:
- type: implements links: documentation_standards
- type: relates links:
Overview
This document outlines the theoretical foundations that underpin our cognitive modeling framework's documentation system, integrating principles from cognitive science, knowledge representation, and machine learning. For comprehensive cognitive science theory, see the knowledge_base/cognitive/cognitive_science.
Core Principles
1. Knowledge Representation
# @knowledge_structure
knowledge_model = {
"hierarchical": {
"concepts": ["[[knowledge_base/cognitive/cognitive_phenomena|Cognitive Phenomena]]", "[[theoretical_foundations]]"],
"implementations": ["[[knowledge_base/cognitive/active_inference|Active Inference]]", "[[belief_updating]]"],
"validations": ["[[validation_framework]]", "[[testing_guide]]"]
},
"relational": {
"bidirectional": ["[[linking_completeness]]", "[[linking_patterns]]"],
"semantic": ["[[ai_semantic_processing]]", "[[machine_readability]]"],
"temporal": ["[[version_control]]", "[[changelog]]"]
}
}
2. Cognitive Architecture
See knowledge_base/cognitive/cognitive_phenomena for detailed theory.
Active Inference Framework
- knowledge_base/cognitive/active_inference - Core computational theory
- knowledge_base/cognitive/free_energy_principle - Theoretical foundation
- knowledge_base/cognitive/predictive_processing - Information processing model
Belief Systems
- belief_updating - Dynamic belief updates
- belief_systems - Belief architecture
- probabilistic_modeling - Uncertainty handling
Action Selection
- action_selection - Decision making
- policy_selection - Strategy choice
- goal_hierarchies - Objective organization
Documentation Integration
1. Machine Readability
See machine_readability for implementation details.
# @documentation_structure
doc_structure = {
"semantic_markup": {
"concepts": "[[concept_template]]",
"implementations": "[[implementation_template]]",
"relationships": "[[relationship_template]]"
},
"validation_rules": {
"completeness": "[[validation_framework]]",
"consistency": "[[linking_validation]]",
"quality": "[[quality_metrics]]"
}
}
2. Knowledge Organization
See knowledge_organization for detailed patterns.
Hierarchical Structure
- Top-level concepts (theoretical_foundations)
- Implementation details (implementation_patterns)
- Validation frameworks (validation_framework)
Network Structure
- Bidirectional links (linking_completeness)
- Semantic relationships (ai_semantic_processing)
- Graph analysis (network_analysis)
3. Version Management
See version_control for implementation.
# @version_management
version_structure = {
"documentation": {
"current": "[[api_reference]]",
"history": "[[changelog]]",
"migrations": "[[migration_guide]]"
},
"code": {
"releases": "[[release_management]]",
"branches": "[[branching_strategy]]",
"tags": "[[version_tags]]"
}
}
Implementation Architecture
1. Documentation System
# @doc_system
class DocumentationSystem:
"""
Core documentation system architecture.
See [[documentation_standards]] for guidelines.
"""
def __init__(self):
self.knowledge_base = KnowledgeGraph()
self.validator = ValidationFramework()
self.processor = SemanticProcessor()
def process_document(self, doc: Document) -> ValidationResult:
"""
Process and validate documentation.
See [[ai_validation_framework]] for details.
"""
# Implementation
pass
2. Knowledge Graph
# @knowledge_graph
class KnowledgeGraph:
"""
Knowledge graph implementation.
See [[knowledge_organization]] for structure.
"""
def __init__(self):
self.nodes = {} # Concept nodes
self.edges = {} # Relationships
self.metadata = {} # Node metadata
def add_relationship(self, source: Node, target: Node, type: str):
"""
Add semantic relationship.
See [[linking_patterns]] for valid types.
"""
# Implementation
pass
3. Validation System
# @validation_system
class ValidationSystem:
"""
Documentation validation system.
See [[validation_framework]] for rules.
"""
def __init__(self):
self.rules = self.load_rules()
self.metrics = QualityMetrics()
def validate_document(self, doc: Document) -> ValidationResult:
"""
Validate documentation against rules.
See [[quality_metrics]] for criteria.
"""
# Implementation
pass
Theoretical Integration
1. Cognitive-Documentation Mapping
graph TD
A[Cognitive Architecture] --> B[Documentation Structure]
B --> C[Knowledge Graph]
C --> D[Validation System]
E[Active Inference] --> F[Information Processing]
F --> G[Knowledge Organization]
G --> H[Quality Metrics]
2. Processing Pipeline
graph LR
A[Document Input] --> B[Semantic Processing]
B --> C[Knowledge Integration]
C --> D[Validation]
D --> E[Quality Assessment]
Quality Framework
1. Documentation Quality
See quality_metrics for detailed criteria.
# @quality_framework
quality_metrics = {
"completeness": {
"required_sections": 0.95, # 95% coverage
"optional_sections": 0.80, # 80% coverage
"link_coverage": 0.90 # 90% link coverage
},
"consistency": {
"style_compliance": 0.95, # 95% style compliance
"link_validity": 1.0, # 100% valid links
"metadata_validity": 1.0 # 100% valid metadata
}
}
2. Validation Rules
See validation_framework for implementation.
# @validation_rules
validation_rules = {
"structural": {
"required_links": ["concept", "implementation"],
"optional_links": ["example", "reference"]
},
"semantic": {
"relationship_types": ["implements", "relates", "extends"],
"metadata_fields": ["title", "type", "status"]
}
}
Best Practices
1. Documentation Development
- Follow documentation_standards
- Use ai_documentation_style
- Implement linking_patterns
- Validate with quality_metrics
2. Knowledge Management
- Maintain knowledge_organization
- Update linking_completeness
- Follow version_control
- Use semantic_processing
3. Quality Assurance
- Run validation_framework
- Check quality_metrics
- Review linking_validation
- Monitor performance_metrics