зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-30 04:36:05 +02:00
275 строки
7.5 KiB
Markdown
275 строки
7.5 KiB
Markdown
# Theoretical Foundations
|
|
|
|
---
|
|
title: Theoretical Foundations
|
|
type: concept
|
|
status: stable
|
|
created: 2024-02-06
|
|
tags:
|
|
- theory
|
|
- foundations
|
|
- concepts
|
|
- architecture
|
|
semantic_relations:
|
|
- type: implements
|
|
links: [[documentation_standards]]
|
|
- type: relates
|
|
links:
|
|
- [[knowledge_base/cognitive/active_inference|Active Inference Theory]]
|
|
- [[knowledge_base/cognitive/cognitive_phenomena|Cognitive Phenomena]]
|
|
- [[machine_readability]]
|
|
---
|
|
|
|
## Overview
|
|
|
|
This document outlines the theoretical foundations that underpin our cognitive modeling framework's documentation system, integrating principles from cognitive science, knowledge representation, and machine learning. For comprehensive cognitive science theory, see the [[knowledge_base/cognitive/cognitive_science|Cognitive Science Knowledge Base]].
|
|
|
|
## Core Principles
|
|
|
|
### 1. Knowledge Representation
|
|
```python
|
|
# @knowledge_structure
|
|
knowledge_model = {
|
|
"hierarchical": {
|
|
"concepts": ["[[knowledge_base/cognitive/cognitive_phenomena|Cognitive Phenomena]]", "[[theoretical_foundations]]"],
|
|
"implementations": ["[[knowledge_base/cognitive/active_inference|Active Inference]]", "[[belief_updating]]"],
|
|
"validations": ["[[validation_framework]]", "[[testing_guide]]"]
|
|
},
|
|
"relational": {
|
|
"bidirectional": ["[[linking_completeness]]", "[[linking_patterns]]"],
|
|
"semantic": ["[[ai_semantic_processing]]", "[[machine_readability]]"],
|
|
"temporal": ["[[version_control]]", "[[changelog]]"]
|
|
}
|
|
}
|
|
```
|
|
|
|
### 2. Cognitive Architecture
|
|
See [[knowledge_base/cognitive/cognitive_phenomena|Cognitive Phenomena]] for detailed theory.
|
|
|
|
#### Active Inference Framework
|
|
- [[knowledge_base/cognitive/active_inference|Active Inference]] - Core computational theory
|
|
- [[knowledge_base/cognitive/free_energy_principle|Free Energy Principle]] - Theoretical foundation
|
|
- [[knowledge_base/cognitive/predictive_processing|Predictive Processing]] - Information processing model
|
|
|
|
#### Belief Systems
|
|
- [[belief_updating]] - Dynamic belief updates
|
|
- [[belief_systems]] - Belief architecture
|
|
- [[probabilistic_modeling]] - Uncertainty handling
|
|
|
|
#### Action Selection
|
|
- [[action_selection]] - Decision making
|
|
- [[policy_selection]] - Strategy choice
|
|
- [[goal_hierarchies]] - Objective organization
|
|
|
|
## Documentation Integration
|
|
|
|
### 1. Machine Readability
|
|
See [[machine_readability]] for implementation details.
|
|
|
|
```python
|
|
# @documentation_structure
|
|
doc_structure = {
|
|
"semantic_markup": {
|
|
"concepts": "[[concept_template]]",
|
|
"implementations": "[[implementation_template]]",
|
|
"relationships": "[[relationship_template]]"
|
|
},
|
|
"validation_rules": {
|
|
"completeness": "[[validation_framework]]",
|
|
"consistency": "[[linking_validation]]",
|
|
"quality": "[[quality_metrics]]"
|
|
}
|
|
}
|
|
```
|
|
|
|
### 2. Knowledge Organization
|
|
See [[knowledge_organization]] for detailed patterns.
|
|
|
|
#### Hierarchical Structure
|
|
- Top-level concepts ([[theoretical_foundations]])
|
|
- Implementation details ([[implementation_patterns]])
|
|
- Validation frameworks ([[validation_framework]])
|
|
|
|
#### Network Structure
|
|
- Bidirectional links ([[linking_completeness]])
|
|
- Semantic relationships ([[ai_semantic_processing]])
|
|
- Graph analysis ([[network_analysis]])
|
|
|
|
### 3. Version Management
|
|
See [[version_control]] for implementation.
|
|
|
|
```python
|
|
# @version_management
|
|
version_structure = {
|
|
"documentation": {
|
|
"current": "[[api_reference]]",
|
|
"history": "[[changelog]]",
|
|
"migrations": "[[migration_guide]]"
|
|
},
|
|
"code": {
|
|
"releases": "[[release_management]]",
|
|
"branches": "[[branching_strategy]]",
|
|
"tags": "[[version_tags]]"
|
|
}
|
|
}
|
|
```
|
|
|
|
## Implementation Architecture
|
|
|
|
### 1. Documentation System
|
|
```python
|
|
# @doc_system
|
|
class DocumentationSystem:
|
|
"""
|
|
Core documentation system architecture.
|
|
See [[documentation_standards]] for guidelines.
|
|
"""
|
|
def __init__(self):
|
|
self.knowledge_base = KnowledgeGraph()
|
|
self.validator = ValidationFramework()
|
|
self.processor = SemanticProcessor()
|
|
|
|
def process_document(self, doc: Document) -> ValidationResult:
|
|
"""
|
|
Process and validate documentation.
|
|
See [[ai_validation_framework]] for details.
|
|
"""
|
|
# Implementation
|
|
pass
|
|
```
|
|
|
|
### 2. Knowledge Graph
|
|
```python
|
|
# @knowledge_graph
|
|
class KnowledgeGraph:
|
|
"""
|
|
Knowledge graph implementation.
|
|
See [[knowledge_organization]] for structure.
|
|
"""
|
|
def __init__(self):
|
|
self.nodes = {} # Concept nodes
|
|
self.edges = {} # Relationships
|
|
self.metadata = {} # Node metadata
|
|
|
|
def add_relationship(self, source: Node, target: Node, type: str):
|
|
"""
|
|
Add semantic relationship.
|
|
See [[linking_patterns]] for valid types.
|
|
"""
|
|
# Implementation
|
|
pass
|
|
```
|
|
|
|
### 3. Validation System
|
|
```python
|
|
# @validation_system
|
|
class ValidationSystem:
|
|
"""
|
|
Documentation validation system.
|
|
See [[validation_framework]] for rules.
|
|
"""
|
|
def __init__(self):
|
|
self.rules = self.load_rules()
|
|
self.metrics = QualityMetrics()
|
|
|
|
def validate_document(self, doc: Document) -> ValidationResult:
|
|
"""
|
|
Validate documentation against rules.
|
|
See [[quality_metrics]] for criteria.
|
|
"""
|
|
# Implementation
|
|
pass
|
|
```
|
|
|
|
## Theoretical Integration
|
|
|
|
### 1. Cognitive-Documentation Mapping
|
|
```mermaid
|
|
graph TD
|
|
A[Cognitive Architecture] --> B[Documentation Structure]
|
|
B --> C[Knowledge Graph]
|
|
C --> D[Validation System]
|
|
|
|
E[Active Inference] --> F[Information Processing]
|
|
F --> G[Knowledge Organization]
|
|
G --> H[Quality Metrics]
|
|
```
|
|
|
|
### 2. Processing Pipeline
|
|
```mermaid
|
|
graph LR
|
|
A[Document Input] --> B[Semantic Processing]
|
|
B --> C[Knowledge Integration]
|
|
C --> D[Validation]
|
|
D --> E[Quality Assessment]
|
|
```
|
|
|
|
## Quality Framework
|
|
|
|
### 1. Documentation Quality
|
|
See [[quality_metrics]] for detailed criteria.
|
|
|
|
```python
|
|
# @quality_framework
|
|
quality_metrics = {
|
|
"completeness": {
|
|
"required_sections": 0.95, # 95% coverage
|
|
"optional_sections": 0.80, # 80% coverage
|
|
"link_coverage": 0.90 # 90% link coverage
|
|
},
|
|
"consistency": {
|
|
"style_compliance": 0.95, # 95% style compliance
|
|
"link_validity": 1.0, # 100% valid links
|
|
"metadata_validity": 1.0 # 100% valid metadata
|
|
}
|
|
}
|
|
```
|
|
|
|
### 2. Validation Rules
|
|
See [[validation_framework]] for implementation.
|
|
|
|
```python
|
|
# @validation_rules
|
|
validation_rules = {
|
|
"structural": {
|
|
"required_links": ["concept", "implementation"],
|
|
"optional_links": ["example", "reference"]
|
|
},
|
|
"semantic": {
|
|
"relationship_types": ["implements", "relates", "extends"],
|
|
"metadata_fields": ["title", "type", "status"]
|
|
}
|
|
}
|
|
```
|
|
|
|
## Best Practices
|
|
|
|
### 1. Documentation Development
|
|
- Follow [[documentation_standards]]
|
|
- Use [[ai_documentation_style]]
|
|
- Implement [[linking_patterns]]
|
|
- Validate with [[quality_metrics]]
|
|
|
|
### 2. Knowledge Management
|
|
- Maintain [[knowledge_organization]]
|
|
- Update [[linking_completeness]]
|
|
- Follow [[version_control]]
|
|
- Use [[semantic_processing]]
|
|
|
|
### 3. Quality Assurance
|
|
- Run [[validation_framework]]
|
|
- Check [[quality_metrics]]
|
|
- Review [[linking_validation]]
|
|
- Monitor [[performance_metrics]]
|
|
|
|
## Related Documentation
|
|
- [[documentation_standards]]
|
|
- [[knowledge_organization]]
|
|
- [[validation_framework]]
|
|
- [[quality_metrics]]
|
|
|
|
## References
|
|
- [[knowledge_base/cognitive/cognitive_phenomena|Cognitive Phenomena]]
|
|
- [[knowledge_base/cognitive/active_inference|Active Inference]]
|
|
- [[machine_readability]]
|
|
- [[implementation_patterns]] |