зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-29 12:16:04 +02:00
7.3 KiB
7.3 KiB
| title | type | status | created | tags | semantic_relations | |||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Active Inference in Ant Colony Behavior | research | stable | 2024-02-07 |
|
|
Active Inference in Ant Colony Behavior
Overview
Research Question
How can active inference principles explain and model emergent collective behavior in ant colonies, particularly in foraging and path optimization?
Significance
Understanding how simple agents using active inference principles can produce complex collective behaviors has implications for both biological systems and artificial swarm intelligence.
Related Work
- knowledge_base/cognitive/collective_behavior_ants
- knowledge_base/cognitive/stigmergic_coordination
- knowledge_base/cognitive/swarm_intelligence
Theoretical Framework
Core Concepts
- knowledge_base/cognitive/active_inference
- knowledge_base/cognitive/free_energy_principle
- knowledge_base/cognitive/emergence_self_organization
Mathematical Foundation
def compute_expected_free_energy(beliefs, policies):
"""
Compute expected free energy for policy evaluation.
Args:
beliefs: Current belief state about environment
policies: Available action policies
Returns:
Expected free energy for each policy
"""
pragmatic_value = compute_pragmatic_value(beliefs, policies)
epistemic_value = compute_epistemic_value(beliefs, policies)
return pragmatic_value + epistemic_value
Methodology
Experimental Design
- Implementation of individual ant agents using active inference
- Environment design with pheromone trails and food sources
- Collective behavior emergence through local interactions
- Analysis of path optimization and foraging efficiency
Implementation
class Nestmate:
"""
Individual ant agent using active inference.
Attributes:
position: Current position in environment
beliefs: Beliefs about environment state
policies: Available action policies
"""
def __init__(self, config):
"""Initialize agent with configuration."""
self.position = Position(x, y, theta)
self.beliefs = initialize_beliefs()
self.policies = generate_policies()
def update(self, dt, world_state):
"""Update agent state and take action."""
# Update beliefs based on observations
observation = self.observe(world_state)
self.update_beliefs(observation)
# Select and execute action
action = self.select_action()
self.execute_action(action, dt)
def update_beliefs(self, observation):
"""Update beliefs using variational inference."""
pass
def select_action(self):
"""Select action using expected free energy."""
G = compute_expected_free_energy(self.beliefs, self.policies)
return select_policy(G)
Validation Methods
- Path efficiency metrics
- Food collection rate
- Emergence of optimal trails
- Collective behavior analysis
Results
Data Analysis
def analyze_colony_behavior(simulation_data):
"""
Analyze collective behavior patterns.
Args:
simulation_data: Recorded simulation data
Returns:
Analysis metrics and visualizations
"""
# Compute path optimization metrics
path_efficiency = compute_path_efficiency(simulation_data)
# Analyze pheromone trail formation
trail_formation = analyze_trail_formation(simulation_data)
# Measure food collection efficiency
foraging_efficiency = compute_foraging_efficiency(simulation_data)
return {
'path_efficiency': path_efficiency,
'trail_formation': trail_formation,
'foraging_efficiency': foraging_efficiency
}
Key Findings
- Active inference enables efficient path optimization
- Emergent trail patterns match biological observations
- Collective behavior emerges from individual inference
Visualizations
def visualize_results(results):
"""Create visualizations of colony behavior."""
plt.figure(figsize=(12, 8))
# Plot pheromone trails
plt.subplot(221)
plot_pheromone_trails(results)
# Plot path efficiency
plt.subplot(222)
plot_path_efficiency(results)
# Plot food collection
plt.subplot(223)
plot_food_collection(results)
plt.tight_layout()
plt.show()
Discussion
Interpretation
- Active inference provides a principled explanation for ant behavior
- Local inference leads to global optimization
- Pheromone trails serve as external memory
Implications
- New insights into biological systems
- Improved swarm robotics algorithms
- Applications to distributed optimization
Limitations
- Computational complexity scaling
- Simplified environment model
- Limited agent capabilities
Implementation Details
Environment Setup
# Setup virtual environment
python -m venv env
source env/bin/activate
# Install dependencies
pip install -r requirements.txt
Dependencies
import numpy as np
import torch
import matplotlib.pyplot as plt
from dataclasses import dataclass
from typing import List, Dict
Configuration
simulation:
max_steps: 10000
timestep: 0.1
random_seed: 42
environment:
size: [100, 100]
food_sources: 5
obstacles: 10
agent:
sensor_range: 5
movement_speed: 1
rotation_speed: 0.5
Reproducibility
Code Repository
- Repository: cognitive/Things/Ant_Colony
- Main simulation: simulation.py
- Agent implementation: agents/nestmate.py
Data
- Simulation recordings
- Analysis results
- Visualization data
Environment
- Python 3.8+
- NumPy, PyTorch
- Matplotlib for visualization
Extensions
Future Work
- Hierarchical active inference models
- Multi-colony interactions
- Dynamic environment adaptation
Open Questions
- Optimal balance of exploration/exploitation
- Scaling to larger colonies
- Transfer to robotic systems
References
Academic References
- Friston, K. "The free-energy principle: a unified brain theory?"
- Deneubourg, J.L. "The Self-Organizing Exploratory Pattern of the Argentine Ant"
- Ramstead, M.J.D. "A tale of two densities: active inference is enactive inference"
Code References
- Things/Ant_Colony/simulation.py
- Things/Ant_Colony/agents/nestmate.py
- Things/Ant_Colony/visualization/renderer.py