cognitive/docs/research/ant_colony_active_inference.md
Daniel Ari Friedman a61f13a26f Updates
2025-02-07 11:08:25 -08:00

279 строки
7.3 KiB
Markdown

---
title: Active Inference in Ant Colony Behavior
type: research
status: stable
created: 2024-02-07
tags:
- active_inference
- ant_colony
- collective_behavior
semantic_relations:
- type: implements
links: [[research_document_template]]
- type: relates
links:
- [[knowledge_base/cognitive/collective_behavior]]
- [[knowledge_base/cognitive/active_inference]]
---
# Active Inference in Ant Colony Behavior
## Overview
### Research Question
How can active inference principles explain and model emergent collective behavior in ant colonies, particularly in foraging and path optimization?
### Significance
Understanding how simple agents using active inference principles can produce complex collective behaviors has implications for both biological systems and artificial swarm intelligence.
### Related Work
- [[knowledge_base/cognitive/collective_behavior_ants|Ant Colony Behavior]]
- [[knowledge_base/cognitive/stigmergic_coordination|Stigmergic Coordination]]
- [[knowledge_base/cognitive/swarm_intelligence|Swarm Intelligence]]
## Theoretical Framework
### Core Concepts
- [[knowledge_base/cognitive/active_inference|Active Inference]]
- [[knowledge_base/cognitive/free_energy_principle|Free Energy Principle]]
- [[knowledge_base/cognitive/emergence_self_organization|Emergence and Self-Organization]]
### Mathematical Foundation
```python
def compute_expected_free_energy(beliefs, policies):
"""
Compute expected free energy for policy evaluation.
Args:
beliefs: Current belief state about environment
policies: Available action policies
Returns:
Expected free energy for each policy
"""
pragmatic_value = compute_pragmatic_value(beliefs, policies)
epistemic_value = compute_epistemic_value(beliefs, policies)
return pragmatic_value + epistemic_value
```
## Methodology
### Experimental Design
1. Implementation of individual ant agents using active inference
2. Environment design with pheromone trails and food sources
3. Collective behavior emergence through local interactions
4. Analysis of path optimization and foraging efficiency
### Implementation
```python
class Nestmate:
"""
Individual ant agent using active inference.
Attributes:
position: Current position in environment
beliefs: Beliefs about environment state
policies: Available action policies
"""
def __init__(self, config):
"""Initialize agent with configuration."""
self.position = Position(x, y, theta)
self.beliefs = initialize_beliefs()
self.policies = generate_policies()
def update(self, dt, world_state):
"""Update agent state and take action."""
# Update beliefs based on observations
observation = self.observe(world_state)
self.update_beliefs(observation)
# Select and execute action
action = self.select_action()
self.execute_action(action, dt)
def update_beliefs(self, observation):
"""Update beliefs using variational inference."""
pass
def select_action(self):
"""Select action using expected free energy."""
G = compute_expected_free_energy(self.beliefs, self.policies)
return select_policy(G)
```
### Validation Methods
- Path efficiency metrics
- Food collection rate
- Emergence of optimal trails
- Collective behavior analysis
## Results
### Data Analysis
```python
def analyze_colony_behavior(simulation_data):
"""
Analyze collective behavior patterns.
Args:
simulation_data: Recorded simulation data
Returns:
Analysis metrics and visualizations
"""
# Compute path optimization metrics
path_efficiency = compute_path_efficiency(simulation_data)
# Analyze pheromone trail formation
trail_formation = analyze_trail_formation(simulation_data)
# Measure food collection efficiency
foraging_efficiency = compute_foraging_efficiency(simulation_data)
return {
'path_efficiency': path_efficiency,
'trail_formation': trail_formation,
'foraging_efficiency': foraging_efficiency
}
```
### Key Findings
1. Active inference enables efficient path optimization
2. Emergent trail patterns match biological observations
3. Collective behavior emerges from individual inference
### Visualizations
```python
def visualize_results(results):
"""Create visualizations of colony behavior."""
plt.figure(figsize=(12, 8))
# Plot pheromone trails
plt.subplot(221)
plot_pheromone_trails(results)
# Plot path efficiency
plt.subplot(222)
plot_path_efficiency(results)
# Plot food collection
plt.subplot(223)
plot_food_collection(results)
plt.tight_layout()
plt.show()
```
## Discussion
### Interpretation
- Active inference provides a principled explanation for ant behavior
- Local inference leads to global optimization
- Pheromone trails serve as external memory
### Implications
1. New insights into biological systems
2. Improved swarm robotics algorithms
3. Applications to distributed optimization
### Limitations
- Computational complexity scaling
- Simplified environment model
- Limited agent capabilities
## Implementation Details
### Environment Setup
```bash
# Setup virtual environment
python -m venv env
source env/bin/activate
# Install dependencies
pip install -r requirements.txt
```
### Dependencies
```python
import numpy as np
import torch
import matplotlib.pyplot as plt
from dataclasses import dataclass
from typing import List, Dict
```
### Configuration
```yaml
simulation:
max_steps: 10000
timestep: 0.1
random_seed: 42
environment:
size: [100, 100]
food_sources: 5
obstacles: 10
agent:
sensor_range: 5
movement_speed: 1
rotation_speed: 0.5
```
## Reproducibility
### Code Repository
- Repository: cognitive/Things/Ant_Colony
- Main simulation: simulation.py
- Agent implementation: agents/nestmate.py
### Data
- Simulation recordings
- Analysis results
- Visualization data
### Environment
- Python 3.8+
- NumPy, PyTorch
- Matplotlib for visualization
## Extensions
### Future Work
1. Hierarchical active inference models
2. Multi-colony interactions
3. Dynamic environment adaptation
### Open Questions
- Optimal balance of exploration/exploitation
- Scaling to larger colonies
- Transfer to robotic systems
## References
### Academic References
1. Friston, K. "The free-energy principle: a unified brain theory?"
2. Deneubourg, J.L. "The Self-Organizing Exploratory Pattern of the Argentine Ant"
3. Ramstead, M.J.D. "A tale of two densities: active inference is enactive inference"
### Code References
- [[Things/Ant_Colony/simulation.py|Main Simulation]]
- [[Things/Ant_Colony/agents/nestmate.py|Agent Implementation]]
- [[Things/Ant_Colony/visualization/renderer.py|Visualization]]
### Documentation
- [[docs/guides/ant_colony_guide|Implementation Guide]]
- [[docs/api/ant_colony_api|API Reference]]
- [[docs/examples/ant_colony_example|Usage Example]]
## Related Research
### Prerequisites
- [[research/active_inference_foundations|Active Inference Foundations]]
- [[research/collective_behavior_basics|Collective Behavior Basics]]
### Follow-up Work
- [[research/hierarchical_swarms|Hierarchical Swarm Behavior]]
- [[research/multi_colony_systems|Multi-Colony Systems]]