зеркало из
				https://github.com/docxology/cognitive.git
				synced 2025-10-31 05:06:04 +02:00 
			
		
		
		
	
		
			
				
	
	
	
		
			6.3 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	
			6.3 KiB
		
	
	
	
	
	
	
	
| title | type | status | created | tags | semantic_relations | |||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Active Inference Learning Path | learning_path | stable | 2024-02-07 | 
 | 
 | 
Active Inference Learning Path
Overview
This learning path guides you through understanding and implementing active inference, from foundational concepts to advanced applications. You'll learn the theoretical principles, mathematical foundations, and practical implementations.
Prerequisites
Required Knowledge
- knowledge_base/mathematics/probability_theory
- knowledge_base/mathematics/information_theory
- knowledge_base/mathematics/statistical_foundations
Recommended Background
- knowledge_base/cognitive/bayesian_brain
- knowledge_base/cognitive/predictive_processing
- Python programming experience
Learning Progression
1. Foundation (Week 1-2)
Core Concepts
- knowledge_base/cognitive/free_energy_principle
- knowledge_base/cognitive/predictive_processing
- knowledge_base/cognitive/active_inference
Practical Exercises
Learning Objectives
- Understand the free energy principle
- Grasp predictive processing fundamentals
- Implement basic belief updating
2. Mathematical Framework (Week 3-4)
Advanced Concepts
- knowledge_base/mathematics/variational_methods
- knowledge_base/mathematics/free_energy_theory
- knowledge_base/mathematics/expected_free_energy
Implementation Practice
Learning Objectives
- Master variational inference
- Implement free energy computation
- Understand expected free energy
3. Implementation (Week 5-6)
Core Components
- knowledge_base/mathematics/belief_updating
- knowledge_base/mathematics/policy_selection
- knowledge_base/mathematics/action_distribution
Projects
Learning Objectives
- Implement complete active inference agent
- Master POMDP framework integration
- Handle real-world applications
4. Advanced Topics (Week 7-8)
Specialized Areas
- knowledge_base/mathematics/path_integral_theory
- knowledge_base/cognitive/hierarchical_processing
- knowledge_base/cognitive/social_cognition
Advanced Projects
Learning Objectives
- Implement hierarchical models
- Develop multi-agent systems
- Apply to complex domains
Study Resources
Core Reading
- knowledge_base/cognitive/free_energy_principle
- knowledge_base/mathematics/active_inference_theory
- knowledge_base/cognitive/active_inference
Code Examples
Additional Resources
- Research papers collection
- Video tutorials
- Community discussions
Assessment
Knowledge Checkpoints
- Foundation: Free energy and predictive processing
- Mathematics: Variational methods and inference
- Implementation: Agent architecture and POMDP
- Advanced: Hierarchical and multi-agent systems
Projects
- Mini-project: Basic belief updating system
- Implementation: Active inference agent
- Final project: Complex application domain
Success Criteria
- Theoretical understanding demonstrated
- Working implementations completed
- Advanced concepts mastered
- Real-world application developed
Next Steps
Advanced Paths
- learning_paths/hierarchical_modeling
- learning_paths/multi_agent_systems
- learning_paths/robotics_control
Specializations
Related Paths
Prerequisites
Follow-up Paths
Implementation Examples
Basic Examples
# Basic active inference agent structure
class ActiveInferenceAgent:
    def __init__(self, model_params):
        self.beliefs = initialize_beliefs()
        self.policies = generate_policies()
        
    def update_beliefs(self, observation):
        # Belief updating using variational inference
        pass
        
    def select_action(self):
        # Policy selection using expected free energy
        pass
Advanced Implementation
# Hierarchical active inference
class HierarchicalAgent:
    def __init__(self, levels):
        self.levels = [
            ActiveInferenceAgent(level_params)
            for level_params in levels
        ]
        
    def update(self, observation):
        # Hierarchical message passing
        for level in self.levels:
            level.update_beliefs(observation)
            prediction = level.generate_prediction()
            observation = prediction  # For next level
Common Challenges
Theoretical Challenges
- Understanding variational inference
- Grasping hierarchical processing
- Interpreting free energy
Implementation Challenges
- Numerical stability
- Performance optimization
- Model design
Solutions
- Start with simple examples
- Use provided templates
- Follow progressive complexity
