зеркало из
				https://github.com/docxology/cognitive.git
				synced 2025-10-31 13:16:05 +02:00 
			
		
		
		
	
		
			
				
	
	
		
			209 строки
		
	
	
		
			6.3 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			209 строки
		
	
	
		
			6.3 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| title: Active Inference Learning Path
 | |
| type: learning_path
 | |
| status: stable
 | |
| created: 2024-02-07
 | |
| tags:
 | |
|   - active_inference
 | |
|   - learning
 | |
|   - progression
 | |
| semantic_relations:
 | |
|   - type: implements
 | |
|     links: [[learning_path_template]]
 | |
|   - type: relates
 | |
|     links:
 | |
|       - [[knowledge_base/cognitive/active_inference]]
 | |
|       - [[knowledge_base/mathematics/free_energy_theory]]
 | |
| ---
 | |
| 
 | |
| # Active Inference Learning Path
 | |
| 
 | |
| ## Overview
 | |
| 
 | |
| This learning path guides you through understanding and implementing active inference, from foundational concepts to advanced applications. You'll learn the theoretical principles, mathematical foundations, and practical implementations.
 | |
| 
 | |
| ## Prerequisites
 | |
| 
 | |
| ### Required Knowledge
 | |
| - [[knowledge_base/mathematics/probability_theory|Probability Theory]]
 | |
| - [[knowledge_base/mathematics/information_theory|Information Theory]]
 | |
| - [[knowledge_base/mathematics/statistical_foundations|Statistical Foundations]]
 | |
| 
 | |
| ### Recommended Background
 | |
| - [[knowledge_base/cognitive/bayesian_brain|Bayesian Brain]]
 | |
| - [[knowledge_base/cognitive/predictive_processing|Predictive Processing]]
 | |
| - Python programming experience
 | |
| 
 | |
| ## Learning Progression
 | |
| 
 | |
| ### 1. Foundation (Week 1-2)
 | |
| #### Core Concepts
 | |
| - [[knowledge_base/cognitive/free_energy_principle|Free Energy Principle]]
 | |
| - [[knowledge_base/cognitive/predictive_processing|Predictive Processing]]
 | |
| - [[knowledge_base/cognitive/active_inference|Active Inference Basics]]
 | |
| 
 | |
| #### Practical Exercises
 | |
| - [[examples/basic_belief_updating|Basic Belief Updating]]
 | |
| - [[examples/simple_prediction|Simple Prediction Exercise]]
 | |
| 
 | |
| #### Learning Objectives
 | |
| - Understand the free energy principle
 | |
| - Grasp predictive processing fundamentals
 | |
| - Implement basic belief updating
 | |
| 
 | |
| ### 2. Mathematical Framework (Week 3-4)
 | |
| #### Advanced Concepts
 | |
| - [[knowledge_base/mathematics/variational_methods|Variational Methods]]
 | |
| - [[knowledge_base/mathematics/free_energy_theory|Free Energy Theory]]
 | |
| - [[knowledge_base/mathematics/expected_free_energy|Expected Free Energy]]
 | |
| 
 | |
| #### Implementation Practice
 | |
| - [[examples/variational_inference|Variational Inference]]
 | |
| - [[examples/free_energy_computation|Free Energy Computation]]
 | |
| 
 | |
| #### Learning Objectives
 | |
| - Master variational inference
 | |
| - Implement free energy computation
 | |
| - Understand expected free energy
 | |
| 
 | |
| ### 3. Implementation (Week 5-6)
 | |
| #### Core Components
 | |
| - [[knowledge_base/mathematics/belief_updating|Belief Updating]]
 | |
| - [[knowledge_base/mathematics/policy_selection|Policy Selection]]
 | |
| - [[knowledge_base/mathematics/action_distribution|Action Distribution]]
 | |
| 
 | |
| #### Projects
 | |
| - [[examples/active_inference_basic|Basic Active Inference Agent]]
 | |
| - [[examples/pomdp_agent|POMDP Implementation]]
 | |
| 
 | |
| #### Learning Objectives
 | |
| - Implement complete active inference agent
 | |
| - Master POMDP framework integration
 | |
| - Handle real-world applications
 | |
| 
 | |
| ### 4. Advanced Topics (Week 7-8)
 | |
| #### Specialized Areas
 | |
| - [[knowledge_base/mathematics/path_integral_theory|Path Integral Methods]]
 | |
| - [[knowledge_base/cognitive/hierarchical_processing|Hierarchical Models]]
 | |
| - [[knowledge_base/cognitive/social_cognition|Social Active Inference]]
 | |
| 
 | |
| #### Advanced Projects
 | |
| - [[examples/hierarchical_agent|Hierarchical Agent]]
 | |
| - [[examples/multi_agent|Multi-Agent System]]
 | |
| 
 | |
| #### Learning Objectives
 | |
| - Implement hierarchical models
 | |
| - Develop multi-agent systems
 | |
| - Apply to complex domains
 | |
| 
 | |
| ## Study Resources
 | |
| 
 | |
| ### Core Reading
 | |
| - [[knowledge_base/cognitive/free_energy_principle|Free Energy Principle]]
 | |
| - [[knowledge_base/mathematics/active_inference_theory|Active Inference Theory]]
 | |
| - [[knowledge_base/cognitive/active_inference|Active Inference Overview]]
 | |
| 
 | |
| ### Code Examples
 | |
| - [[examples/active_inference_basic|Basic Implementation]]
 | |
| - [[examples/pomdp_agent|POMDP Example]]
 | |
| - [[examples/hierarchical_agent|Hierarchical Example]]
 | |
| 
 | |
| ### Additional Resources
 | |
| - Research papers collection
 | |
| - Video tutorials
 | |
| - Community discussions
 | |
| 
 | |
| ## Assessment
 | |
| 
 | |
| ### Knowledge Checkpoints
 | |
| 1. Foundation: Free energy and predictive processing
 | |
| 2. Mathematics: Variational methods and inference
 | |
| 3. Implementation: Agent architecture and POMDP
 | |
| 4. Advanced: Hierarchical and multi-agent systems
 | |
| 
 | |
| ### Projects
 | |
| 1. Mini-project: Basic belief updating system
 | |
| 2. Implementation: Active inference agent
 | |
| 3. Final project: Complex application domain
 | |
| 
 | |
| ### Success Criteria
 | |
| - Theoretical understanding demonstrated
 | |
| - Working implementations completed
 | |
| - Advanced concepts mastered
 | |
| - Real-world application developed
 | |
| 
 | |
| ## Next Steps
 | |
| 
 | |
| ### Advanced Paths
 | |
| - [[learning_paths/hierarchical_modeling|Hierarchical Modeling]]
 | |
| - [[learning_paths/multi_agent_systems|Multi-Agent Systems]]
 | |
| - [[learning_paths/robotics_control|Robotics Control]]
 | |
| 
 | |
| ### Specializations
 | |
| - [[specializations/neuroscience|Computational Neuroscience]]
 | |
| - [[specializations/robotics|Robotics and Control]]
 | |
| - [[specializations/ai|Artificial Intelligence]]
 | |
| 
 | |
| ## Related Paths
 | |
| 
 | |
| ### Prerequisites
 | |
| - [[learning_paths/probability_theory|Probability Theory]]
 | |
| - [[learning_paths/information_theory|Information Theory]]
 | |
| 
 | |
| ### Follow-up Paths
 | |
| - [[learning_paths/advanced_ai|Advanced AI]]
 | |
| - [[learning_paths/cognitive_architectures|Cognitive Architectures]]
 | |
| 
 | |
| ## Implementation Examples
 | |
| 
 | |
| ### Basic Examples
 | |
| ```python
 | |
| # Basic active inference agent structure
 | |
| class ActiveInferenceAgent:
 | |
|     def __init__(self, model_params):
 | |
|         self.beliefs = initialize_beliefs()
 | |
|         self.policies = generate_policies()
 | |
|         
 | |
|     def update_beliefs(self, observation):
 | |
|         # Belief updating using variational inference
 | |
|         pass
 | |
|         
 | |
|     def select_action(self):
 | |
|         # Policy selection using expected free energy
 | |
|         pass
 | |
| ```
 | |
| 
 | |
| ### Advanced Implementation
 | |
| ```python
 | |
| # Hierarchical active inference
 | |
| class HierarchicalAgent:
 | |
|     def __init__(self, levels):
 | |
|         self.levels = [
 | |
|             ActiveInferenceAgent(level_params)
 | |
|             for level_params in levels
 | |
|         ]
 | |
|         
 | |
|     def update(self, observation):
 | |
|         # Hierarchical message passing
 | |
|         for level in self.levels:
 | |
|             level.update_beliefs(observation)
 | |
|             prediction = level.generate_prediction()
 | |
|             observation = prediction  # For next level
 | |
| ```
 | |
| 
 | |
| ## Common Challenges
 | |
| 
 | |
| ### Theoretical Challenges
 | |
| - Understanding variational inference
 | |
| - Grasping hierarchical processing
 | |
| - Interpreting free energy
 | |
| 
 | |
| ### Implementation Challenges
 | |
| - Numerical stability
 | |
| - Performance optimization
 | |
| - Model design
 | |
| 
 | |
| ### Solutions
 | |
| - Start with simple examples
 | |
| - Use provided templates
 | |
| - Follow progressive complexity  | 
