Daniel Ari Friedman 30b11dfb3a Updates
2025-02-07 12:22:16 -08:00

8.1 KiB

type id matrix_type created modified complexity tags related_spaces semantic_relations
matrix_spec B_matrix_001 transition 2024-03-15 2024-03-15 advanced
matrix
transition
active-inference
dynamics
probability
control
s_space
pi_space
belief_space
type links
implements
markov_property
transition_model
type links
influences
policy_selection
state_prediction
type links
relates_to
dynamics_model
control_theory

Overview

The B-matrix is a fundamental component in POMDPs and active inference frameworks, representing state transition probabilities under different actions. It encodes the dynamics of the environment and how actions influence state changes, forming the basis for prediction, planning, and control.

Core Concepts

Fundamental Definition

  • transition_probability - Basic concept
    • Conditional probability P(s'|s,π)
    • State transitions
    • Action influence
    • Temporal dynamics

Key Properties

  • markov_property - Memory independence
    • History independence
    • Current state sufficiency
    • Future prediction

Structural Characteristics

  • matrix_structure - Organization
    • Dimensionality
    • Sparsity patterns
    • Symmetry properties
    • Conservation laws

Mathematical Framework

Formal Definition

B_{ijk} = P(s'_i|s_j,π_k)

# Constraints
∑_i B_{ijk} = 1  ∀j,k
B_{ijk} ≥ 0     ∀i,j,k

Matrix Structure

dimensions:
  rows: num_states        # Next state (s')
  cols: num_states        # Current state (s)
  depth: num_actions      # Actions/policies (π)
constraints:
  probability:
    - sum(axis=0) == 1.0  # Column-wise normalization
    - all_values >= 0     # Non-negative probabilities
  structure:
    - rows == cols        # Square matrix per action
    - depth == num_policies

Probabilistic Properties

Implementation Details

Data Structures

Basic Structure

class BMatrix:
    def __init__(self, num_states: int, num_actions: int):
        self.B = np.zeros((num_states, num_states, num_actions))
        self.initialize_transitions()
        
    def initialize_transitions(self):
        """Initialize with identity or prior knowledge"""
        for a in range(self.num_actions):
            self.B[:,:,a] = np.eye(self.num_states)  # Start with self-transitions

Advanced Features

    def get_transition_distribution(self, state: int, action: int) -> Distribution:
        """Get probability distribution over next states"""
        return Distribution(self.B[:, state, action])
    
    def sample_next_state(self, state: int, action: int) -> int:
        """Sample next state from transition distribution"""
        return np.random.choice(
            self.num_states,
            p=self.B[:, state, action]
        )

Storage Formats

  • matrix_storage - Data management
    • Dense arrays
    • Sparse representations
    • Compressed formats
    • Memory mapping

Computational Methods

  • transition_computation - Processing
    • Matrix operations
    • Parallel computation
    • GPU acceleration
    • Distributed processing

Learning and Adaptation

Learning Methods

Maximum Likelihood

def update_transitions_ml(self, 
                        state: int, 
                        action: int, 
                        next_state: int,
                        learning_rate: float):
    """Update transitions using maximum likelihood"""
    target = np.zeros(self.num_states)
    target[next_state] = 1
    self.B[:, state, action] = (1 - learning_rate) * self.B[:, state, action] + \
                              learning_rate * target

Bayesian Updates

def update_transitions_bayes(self,
                           state: int,
                           action: int,
                           next_state: int,
                           prior_strength: float):
    """Update transitions using Bayesian inference"""
    self.counts[next_state, state, action] += 1
    alpha = self.counts[:, state, action]
    self.B[:, state, action] = dirichlet.mean(alpha + prior_strength)

Structure Learning

  • causal_discovery - Structure identification
    • Sparsity patterns
    • Invariant relationships
    • Causal mechanisms
    • Independence testing

Online Adaptation

  • dynamic_learning - Real-time updates
    • Incremental learning
    • Adaptive rates
    • Forgetting factors
    • Confidence tracking

Applications

Planning and Control

Policy Evaluation

def evaluate_policy(self, policy: np.ndarray, horizon: int) -> np.ndarray:
    """Evaluate state occupancy under policy"""
    state_dist = initial_distribution
    for t in range(horizon):
        action = policy[t]
        state_dist = self.B[:,:,action] @ state_dist
    return state_dist

Optimal Control

  • optimal_control - Control methods
    • LQR formulation
    • Model predictive control
    • Stochastic optimal control
    • Risk-sensitive control

Prediction and Simulation

Forward Simulation

def simulate_trajectory(self,
                      initial_state: int,
                      policy: List[int],
                      num_samples: int) -> np.ndarray:
    """Simulate multiple trajectories under policy"""
    trajectories = np.zeros((num_samples, len(policy) + 1))
    trajectories[:,0] = initial_state
    
    for t, action in enumerate(policy):
        for n in range(num_samples):
            current_state = int(trajectories[n,t])
            trajectories[n,t+1] = self.sample_next_state(current_state, action)
            
    return trajectories

State Prediction

  • state_prediction - Future states
    • Expected states
    • Uncertainty propagation
    • Confidence bounds
    • Risk assessment

Integration with Other Components

With State Space

With Action Space

With Observation Model

Advanced Topics

Information Theory

  • transition_information - Information measures
    • Entropy rate
    • Channel capacity
    • Information flow
    • Predictive information

Geometric Properties

  • transition_geometry - Geometric aspects
    • Manifold structure
    • Geodesics
    • Parallel transport
    • Curvature

Stability Analysis

  • transition_stability - Stability properties
    • Fixed points
    • Attractors
    • Lyapunov stability
    • Structural stability

Optimization and Efficiency

Computational Optimization

Numerical Stability

  • numerical_methods - Numerical issues
    • Conditioning
    • Error propagation
    • Precision control
    • Stability preservation

Resource Management

  • resource_optimization - Resources
    • Memory allocation
    • Computation scheduling
    • Load balancing
    • Power efficiency

Best Practices

Implementation Guidelines

Validation Methods

  • validation_methods - Quality assurance
    • Unit testing
    • Integration testing
    • Performance testing
    • Validation metrics

Maintenance Procedures

References

See Also